Home
Class 12
MATHS
Let f(x)= lim(n->oo)(sinx)^(2n)...

Let `f(x)= lim_(n->oo)(sinx)^(2n)`

A

Discontinuous at infinite number of points

B

discontinuous at `x=(pi)/(2)`

C

Discontinuous at `x=-(pi)/(2)`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem \( f(x) = \lim_{n \to \infty} (\sin x)^{2n} \), we will analyze the limit based on the value of \( \sin x \). ### Step-by-Step Solution: 1. **Understanding the Limit**: We start with the function: \[ f(x) = \lim_{n \to \infty} (\sin x)^{2n} \] The behavior of this limit depends on the value of \( \sin x \). 2. **Case Analysis**: We will consider three cases based on the value of \( \sin x \): - **Case 1**: \( \sin x = 1 \) - If \( \sin x = 1 \) (which occurs at \( x = \frac{\pi}{2} + 2k\pi \), where \( k \) is an integer), then: \[ f(x) = \lim_{n \to \infty} 1^{2n} = 1 \] - **Case 2**: \( \sin x = 0 \) - If \( \sin x = 0 \) (which occurs at \( x = k\pi \), where \( k \) is an integer), then: \[ f(x) = \lim_{n \to \infty} 0^{2n} = 0 \] - **Case 3**: \( 0 < \sin x < 1 \) - If \( 0 < \sin x < 1 \), then \( (\sin x)^{2n} \) approaches 0 as \( n \) approaches infinity: \[ f(x) = \lim_{n \to \infty} (\sin x)^{2n} = 0 \] 3. **Conclusion**: From the analysis above, we can summarize: - If \( \sin x = 1 \), then \( f(x) = 1 \). - If \( \sin x = 0 \) or \( 0 < \sin x < 1 \), then \( f(x) = 0 \). Thus, we can conclude: \[ f(x) = \begin{cases} 1 & \text{if } x = \frac{\pi}{2} + 2k\pi \\ 0 & \text{if } x = k\pi \text{ or } 0 < \sin x < 1 \end{cases} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

Let f(x)=lim_(n->oo)(log(2+x)-x^(2n)sinx)/(1+x^(2n)) . then

lim_(n->oo)sin(x/2^n)/(x/2^n)

lim_(n->oo) nsin(1/n)

lim_(n->oo)2^(n-1)sin(a/2^n)

Let f(x)=lim_(n to oo) ((2 sin x)^(2n))/(3^(n)-(2 cos x)^(2n)), n in Z . Then

Let f(x)=lim_(ntooo) (x)/(x^(2n)+1). Then f has

lim_(x->oo)[sinx/x]

lim_(x->oo)sinx/x =

Let f:(-pi/2, pi/2)->R , f(x) ={lim_(n->oo) ((tanx)^(2n)+x^2)/(sin^2x+(tanx)^(2n)) x in 0 , n in N ; 1 if x=0 which of the following holds good? (a) f(-(pi^(-))/4)=f((pi^(+))/4) (b) f(-(pi^(-))/4)=f(-(pi^(+))/4) (c) f((pi^(-))/4)=f((pi^(+))/4) (d) f(0^(+))=f(0)=f(0^(-))

Discuss the continuity of f(x)in[0,2],w h e r ef(x)=(lim)_(n->oo)(sin (pix/2))^(2n)