Home
Class 12
MATHS
if f(x) ={{:(2x-[x]+ xsin (x-[x]),,x ne ...

`if f(x) ={{:(2x-[x]+ xsin (x-[x]),,x ne 0) ,( 0,, x=0):}` where [.] denotes the greatest integer function then

A

f(X) is differentiable at x=0

B

f(x) is differentiable at x=2

C

f(x) is continuous but not differentiable at x=0

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the function \( f(x) \) defined as follows: \[ f(x) = \begin{cases} 2x - [x] + x \sin(x - [x]) & \text{if } x \neq 0 \\ 0 & \text{if } x = 0 \end{cases} \] where \([x]\) denotes the greatest integer function. ### Step 1: Check continuity at \( x = 0 \) To check continuity at \( x = 0 \), we need to evaluate the left-hand limit, right-hand limit, and the function value at \( x = 0 \). 1. **Calculate \( f(0) \)**: \[ f(0) = 0 \] 2. **Calculate \( f(0^+) \)** (Right-hand limit): - For \( x \) approaching \( 0 \) from the right (e.g., \( x = 0.1 \)): \[ f(0^+) = 2(0) - [0] + 0 \cdot \sin(0 - [0]) = 0 - 0 + 0 = 0 \] 3. **Calculate \( f(0^-) \)** (Left-hand limit): - For \( x \) approaching \( 0 \) from the left (e.g., \( x = -0.1 \)): \[ f(0^-) = 2(0) - [-0.1] + 0 \cdot \sin(0 - [-0.1]) = 0 - (-1) + 0 = 1 \] Now we compare the limits: - \( f(0^+) = 0 \) - \( f(0^-) = 1 \) - \( f(0) = 0 \) Since \( f(0^+) \neq f(0^-) \), the function is discontinuous at \( x = 0 \). ### Step 2: Check continuity at \( x = 2 \) Next, we check continuity at \( x = 2 \). 1. **Calculate \( f(2) \)**: \[ f(2) = 2(2) - [2] + 2 \sin(2 - [2]) = 4 - 2 + 2 \sin(0) = 4 - 2 + 0 = 2 \] 2. **Calculate \( f(2^+) \)** (Right-hand limit): - For \( x \) approaching \( 2 \) from the right (e.g., \( x = 2.1 \)): \[ f(2^+) = 2(2) - [2.1] + 2 \sin(2 - [2.1]) = 4 - 2 + 2 \sin(0) = 4 - 2 + 0 = 2 \] 3. **Calculate \( f(2^-) \)** (Left-hand limit): - For \( x \) approaching \( 2 \) from the left (e.g., \( x = 1.9 \)): \[ f(2^-) = 2(2) - [1.9] + 2 \sin(2 - [1.9]) = 4 - 1 + 2 \sin(0.1) = 4 - 1 + 2 \cdot 0.09983 \approx 3.19966 \] Now we compare the limits: - \( f(2^+) = 2 \) - \( f(2^-) \approx 3.19966 \) - \( f(2) = 2 \) Since \( f(2^+) \neq f(2^-) \), the function is discontinuous at \( x = 2 \). ### Conclusion Since the function is discontinuous at both \( x = 0 \) and \( x = 2 \), it is also non-differentiable at these points. ### Final Answer The function \( f(x) \) is discontinuous at both \( x = 0 \) and \( x = 2 \).
Promotional Banner

Similar Questions

Explore conceptually related problems

If [.] denotes the greatest integer function, then f(x)=[x]+[x+(1)/(2)]

If [x]^(2)-3[x]+2=0 where [*] denotes the greatest integer function, then

Let f(x)={{:(x[(1)/(x)]+x[x],if, x ne0),(0,if,x=0):} (where [x] denotes the greatest integer function). Then the correct statement is/are

Solve x^2-4-[x]=0 (where [] denotes the greatest integer function).

Solve x^2-4-[x]=0 (where [] denotes the greatest integer function).

Solve x^2-4-[x]=0 (where [] denotes the greatest integer function).

If f(x)=([x])/(|x|), x ne 0 , where [.] denotes the greatest integer function, then f'(1) is

If f(x)={((sin([x]+x))/([x]+x),x!=0),(1,x=0):} when [.] denotes the greatest integer function, then:

Solve x^2-4x-[x]=0 (where [] denotes the greatest integer function).

If f(x)={{:(,x[x], 0 le x lt 2),(,(x-1)[x], 2 le x lt 3):} where [.] denotes the greatest integer function, then continutity and diffrentiability of f(x)