Home
Class 12
MATHS
f(x) ={{:( xe ^(-((1)/(x)+(1)/(|x|))),...

`f(x) ={{:( xe ^(-((1)/(x)+(1)/(|x|))), x ne 0),( a , x=0):}` the value of a , such that f(x) is differentiable at x=0, is equal to

A

1

B

`-1`

C

0

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To determine the value of \( a \) such that the function \[ f(x) = \begin{cases} x e^{-\left(\frac{1}{x} + \frac{1}{|x|}\right)}, & x \neq 0 \\ a, & x = 0 \end{cases} \] is differentiable at \( x = 0 \), we need to ensure that the function is continuous at that point and that the derivative exists at that point. ### Step 1: Check Continuity at \( x = 0 \) For \( f(x) \) to be continuous at \( x = 0 \), we must have: \[ \lim_{x \to 0} f(x) = f(0) = a \] We will calculate the left-hand limit and the right-hand limit as \( x \) approaches 0. #### Left-hand limit as \( x \to 0^- \): When \( x < 0 \), we have: \[ f(x) = x e^{-\left(\frac{1}{x} + \frac{1}{|x|}\right)} = x e^{-\left(\frac{1}{x} + \frac{1}{-x}\right)} = x e^{-\left(\frac{1}{x} - \frac{1}{x}\right)} = x e^{0} = x \] Thus, \[ \lim_{x \to 0^-} f(x) = \lim_{x \to 0^-} x = 0 \] #### Right-hand limit as \( x \to 0^+ \): When \( x > 0 \), we have: \[ f(x) = x e^{-\left(\frac{1}{x} + \frac{1}{|x|}\right)} = x e^{-\left(\frac{1}{x} + \frac{1}{x}\right)} = x e^{-\frac{2}{x}} \] As \( x \to 0^+ \), \( e^{-\frac{2}{x}} \to 0 \) much faster than \( x \) approaches 0, hence: \[ \lim_{x \to 0^+} f(x) = \lim_{x \to 0^+} x e^{-\frac{2}{x}} = 0 \] ### Step 2: Set the Limits Equal to \( a \) Since both the left-hand limit and the right-hand limit as \( x \to 0 \) equal 0, we set: \[ a = 0 \] ### Step 3: Check Differentiability at \( x = 0 \) To check differentiability, we need to find the derivative at \( x = 0 \): \[ f'(0) = \lim_{h \to 0} \frac{f(h) - f(0)}{h} = \lim_{h \to 0} \frac{f(h) - 0}{h} = \lim_{h \to 0} \frac{f(h)}{h} \] For \( h > 0 \): \[ f(h) = h e^{-\frac{2}{h}} \implies \frac{f(h)}{h} = e^{-\frac{2}{h}} \] As \( h \to 0^+ \), \( e^{-\frac{2}{h}} \to 0 \). For \( h < 0 \): \[ f(h) = h \implies \frac{f(h)}{h} = 1 \] As \( h \to 0^- \), this limit approaches 1. Since the left-hand limit (1) and the right-hand limit (0) do not match, \( f'(0) \) does not exist, indicating that \( f(x) \) is not differentiable at \( x = 0 \). ### Conclusion Thus, the value of \( a \) such that \( f(x) \) is continuous at \( x = 0 \) is: \[ \boxed{0} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)={:{(xe^(-(1/(|x|) + 1/x)), x ne 0),(0 , x =0 ):} then f(x) is

f(x)={{:(e^(1//x)/(1+e^(1//x)),if x ne 0),(0,if x = 0):} at x = 0

Let f (x) = {{:(e ^((1)/(x ^(2)))sin ""(1)/(x), x ne0),(lamda, x =(0):}, then f '(0)

If f(x)={{:(,x^(2)sin((1)/(x)),x ne 0),(,0, x=0):} , then

If f(x)= {{:(,(1)/(x)-(2)/(e^(2x)-1),x ne 0),(,1,x=0):}

If f(x) = {{:(1/(1+e^(1//x)), x ne 0),(0,x=0):} then f(x) is

If f(x) = {{:((1)/(e^(1//x))",",x ne 0),(0",",x = 0):} then

If f(x)={{:((e^((2)/(x))-1)/(e^((2)/(x))+1),:,x ne 0),(0,:,x=0):} , then f(x) is

If f(x)= {{:(,(x log cos x)/(log(1+x^(2))),x ne 0),(,0,x=0):} then

If f(x)={{:(,(x-a)^(n)cos ((1)/(x-a)), x ne a),(,0,x=a):} then at x=a, f(x) is