Home
Class 12
MATHS
Let f(x) ={(sin2x , if 0leqxleqpi/6),(ax...

Let `f(x) ={(sin2x , if 0leqxleqpi/6),(ax+b , if pi/6ltxlt1):}` If `f(x)` and `f'(x)` are continuous then `a` & `b` are (A) `a=1,b=(1)/(sqrt( 2)) +(pi)/(6)` (B) `a=(1) /( sqrt(2)),b=(1)/(sqrt(2))` (C) `a=1,b=(sqrt(3))/(2)-(pi)/(6)` (D) None of these

A

`a=1,b=(1)/(sqrt( 2)) +(pi)/(6)`

B

`a=(1) /( sqrt(2)),b=(1)/(sqrt(2))`

C

`a=1,b=(sqrt(3))/(2)-(pi)/(6)`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to ensure that the function \( f(x) \) and its derivative \( f'(x) \) are continuous at the point \( x = \frac{\pi}{6} \). ### Step 1: Ensure Continuity of \( f(x) \) The function \( f(x) \) is defined piecewise: - For \( 0 \leq x \leq \frac{\pi}{6} \), \( f(x) = \sin(2x) \) - For \( \frac{\pi}{6} < x < 1 \), \( f(x) = ax + b \) To ensure continuity at \( x = \frac{\pi}{6} \), we need: \[ \lim_{x \to \left(\frac{\pi}{6}\right)^-} f(x) = \lim_{x \to \left(\frac{\pi}{6}\right)^+} f(x) \] Calculating the left-hand limit: \[ \lim_{x \to \left(\frac{\pi}{6}\right)^-} f(x) = \sin\left(2 \cdot \frac{\pi}{6}\right) = \sin\left(\frac{\pi}{3}\right) = \frac{\sqrt{3}}{2} \] Calculating the right-hand limit: \[ \lim_{x \to \left(\frac{\pi}{6}\right)^+} f(x) = a\left(\frac{\pi}{6}\right) + b \] Setting these equal gives us our first equation: \[ \frac{\sqrt{3}}{2} = a\left(\frac{\pi}{6}\right) + b \quad \text{(1)} \] ### Step 2: Ensure Continuity of \( f'(x) \) Next, we need to ensure that the derivatives are also continuous at \( x = \frac{\pi}{6} \). Calculating \( f'(x) \): - For \( 0 \leq x < \frac{\pi}{6} \), \( f'(x) = \frac{d}{dx}(\sin(2x)) = 2\cos(2x) \) - For \( \frac{\pi}{6} < x < 1 \), \( f'(x) = a \) Calculating the left-hand derivative: \[ \lim_{x \to \left(\frac{\pi}{6}\right)^-} f'(x) = 2\cos\left(2 \cdot \frac{\pi}{6}\right) = 2\cos\left(\frac{\pi}{3}\right) = 2 \cdot \frac{1}{2} = 1 \] Setting this equal to the right-hand derivative gives us our second equation: \[ 1 = a \quad \text{(2)} \] ### Step 3: Solve the Equations From equation (2), we have: \[ a = 1 \] Substituting \( a = 1 \) into equation (1): \[ \frac{\sqrt{3}}{2} = 1 \cdot \left(\frac{\pi}{6}\right) + b \] \[ b = \frac{\sqrt{3}}{2} - \frac{\pi}{6} \] ### Final Values Thus, we have: \[ a = 1, \quad b = \frac{\sqrt{3}}{2} - \frac{\pi}{6} \] ### Conclusion The correct answer is: **(C) \( a = 1, b = \frac{\sqrt{3}}{2} - \frac{\pi}{6} \)**
Promotional Banner

Similar Questions

Explore conceptually related problems

Let f(x)={s in2x ,0

sin^-1 (cos(sin^-1(sqrt(3)/2))= (A) pi/3 (B) pi/6 (C) - pi/6 (D) none of these

sin^-1 (-1/2)+tan^-1 (sqrt(3))= (A) -pi/6 (B) pi/3 (C) pi/6 (D) none of these

If f^(prime)(x)=1/(-x+sqrt(x^2+1)) and f(0)=(1+sqrt(2))/2 then f(1) is equal to- (a) log"(sqrt(2)+1) (b) 1 (c) 1+sqrt(2) (d) none of these

If sin^(-1)x-cos^(-1)x=pi/6 , then x= (a) 1/2 (b) (sqrt(3))/2 (c) -1/2 (d) none of these

sin^(-1)sqrt((2-sqrt(3))/4)+cos^(-1)(sqrt(12)/4)+sec^(-1)(sqrt(2))= (a) 0 (b) pi/4 (c) pi/6 (d) pi/2

If f(x)=(sin^(-1)x)/(sqrt(1-x^2)),t h e n(1-x^2)f^(x)-xf(x)= (a)1 (b) -1 (c) 0 (d) none of these

The solution for x of the equation int_(sqrt(2))^x(dt)/(tsqrt(t^2-1))=pi/2 is pi (b) (sqrt(3))/2 (c) 2sqrt(2) (d) none of these

A solution of sin^-1 (1) -sin^-1 (sqrt(3)/x^2)- pi/6 =0 is (A) x=-sqrt(2) (B) x=sqrt(2) (C) x=2 (D) x= 1/sqrt(2)

lim_(xrarr1^(-)) (sqrtpi-sqrt(2sin^-1x))/sqrt(1-x)= (A) sqrt(2/pi) (B) sqrt(pi/2) (C) 1/pi (D) sqrt(1/pi)