Home
Class 12
MATHS
If f(x)={x^3,if x^2<1 and x, if x^2>=1 t...

If `f(x)={x^3,if x^2<1 and x, if x^2>=1` then `f(x)` is differentiable at (a) `(-oo,oo)-{1}` (b) `(-oo,oo)-{1,-1}` (c) `(-oo,oo)-{1,-1,0}` (d) `(-oo,oo)-{-1}`

A

`(-oo,oo)-{1}`

B

`(-oo,oo)-{1-1}`

C

`(-oo,oo)-{1-1,0}`

D

`(-oo,oo)-{-1}`

Text Solution

AI Generated Solution

The correct Answer is:
To determine where the function \( f(x) \) is differentiable, we first need to analyze the function given by: \[ f(x) = \begin{cases} x^3 & \text{if } x^2 < 1 \\ x & \text{if } x^2 \geq 1 \end{cases} \] ### Step 1: Identify the intervals The condition \( x^2 < 1 \) implies that \( -1 < x < 1 \). The condition \( x^2 \geq 1 \) implies that \( x \leq -1 \) or \( x \geq 1 \). Therefore, we can rewrite the function as: \[ f(x) = \begin{cases} x^3 & \text{if } -1 < x < 1 \\ x & \text{if } x \leq -1 \text{ or } x \geq 1 \end{cases} \] ### Step 2: Check continuity at the boundary points To check differentiability, we first need to ensure that the function is continuous at the boundary points \( x = -1 \) and \( x = 1 \). 1. **At \( x = -1 \)**: - From the left: \( \lim_{x \to -1^-} f(x) = (-1)^3 = -1 \) - From the right: \( \lim_{x \to -1^+} f(x) = -1 \) - \( f(-1) = -1 \) - Since both limits and the function value are equal, \( f(x) \) is continuous at \( x = -1 \). 2. **At \( x = 1 \)**: - From the left: \( \lim_{x \to 1^-} f(x) = (1)^3 = 1 \) - From the right: \( \lim_{x \to 1^+} f(x) = 1 \) - \( f(1) = 1 \) - Since both limits and the function value are equal, \( f(x) \) is continuous at \( x = 1 \). ### Step 3: Check differentiability at the boundary points Next, we need to check if \( f(x) \) is differentiable at \( x = -1 \) and \( x = 1 \). 1. **At \( x = -1 \)**: - The derivative from the left: \( f'(x) = 3x^2 \) gives \( f'(-1) = 3(-1)^2 = 3 \) - The derivative from the right: \( f'(x) = 1 \) gives \( f'(-1) = 1 \) - Since the left-hand derivative (3) does not equal the right-hand derivative (1), \( f(x) \) is not differentiable at \( x = -1 \). 2. **At \( x = 1 \)**: - The derivative from the left: \( f'(x) = 3x^2 \) gives \( f'(1) = 3(1)^2 = 3 \) - The derivative from the right: \( f'(x) = 1 \) gives \( f'(1) = 1 \) - Since the left-hand derivative (3) does not equal the right-hand derivative (1), \( f(x) \) is not differentiable at \( x = 1 \). ### Step 4: Conclusion Since \( f(x) \) is not differentiable at \( x = -1 \) and \( x = 1 \), the function is differentiable everywhere else in the real numbers except these points. Therefore, the correct answer is: \[ (-\infty, \infty) - \{-1, 1\} \] ### Final Answer (b) \( (-\infty, \infty) - \{-1, 1\} \)
Promotional Banner

Similar Questions

Explore conceptually related problems

The set of points where the function f(x)=x|x| is differentiable is (-oo,oo) (b) (-oo,0)uu(0,oo) (0,oo) (d) [0,oo)

The set of points where the function f(x)=x|x| is differentiable is (a) (-oo,\ oo) (b) (-oo,\ 0)uu(0,\ oo) (c) (0,\ oo) (d) [0,\ oo]

The function f(x)=cot^(-1)x+x increases in the interval (a) (1,\ oo) (b) (-1,\ oo) (c) (-oo,\ oo) (d) (0,\ oo)

f(x)=(x-2)|x-3| is monotonically increasing in (a) (-oo,5/2)uu(3,oo) (b) (5/2,oo) (c) (2,oo) (d) (-oo,3)

The domain of definition of f(x)=((log)_2(x+3))/(x^2+3x+2) is R-{-1,-2} (b) (-2,oo) R-{-1,-2,-3} (d) (-3,oo)-{-1,-2}

The domain of the function f(x)=1/(sqrt(|x|-x)) is: (A) (-oo,oo) (B) (0,oo (C) (-oo,""0) (D) (-oo,oo)"-"{0}

If e^x+e^(f(x))=e , then the range of f(x) is (-oo,1] (b) (-oo,1) (1, oo) (d) [1,oo)

The domain of the function f(x)=1/(sqrt(|x|-x)) is: (1) (-oo,oo) (2) (0,oo (3) (-oo,""0) (4) (-oo,oo)"-"{0}

If the function f(x)=2x^2-k x+5 is increasing on [1,\ 2] , then k lies in the interval (a) (-oo,\ 4) (b) (4,\ oo) (c) (-oo,\ 8) (d) (8,\ oo)

the interval in which the function f given by f(x) = x^2 e^(-x) is strictly increasing, is (a) ( -(oo) , (oo) ) (b) ( -(oo) , 0 ) (c) ( 2 , (oo) ) (d) ( 0 , 2 )