Home
Class 12
MATHS
If f(x)={{:( e^(x^(2)+x), x gt0),( ax+b,...

If `f(x)={{:( e^(x^(2)+x), x gt0),( ax+b, xle0):}`is differentiable at `x=0` , then (a) `a=1,b=-1` (b) `a=-1,b=1` (c) `a=1,b=1` (d) `a=-1,b=-1`

A

a=1,b=-1

B

a=-1,b=1

C

a=1,b=1

D

a=-1,b=-1

Text Solution

AI Generated Solution

The correct Answer is:
To determine the values of \( a \) and \( b \) such that the function \[ f(x) = \begin{cases} e^{x^2 + x} & \text{if } x > 0 \\ ax + b & \text{if } x \leq 0 \end{cases} \] is differentiable at \( x = 0 \), we need to ensure that the function is continuous at \( x = 0 \) and that the left-hand derivative equals the right-hand derivative at that point. ### Step 1: Check Continuity at \( x = 0 \) For \( f(x) \) to be continuous at \( x = 0 \), the left-hand limit as \( x \) approaches 0 must equal the right-hand limit as \( x \) approaches 0: \[ \lim_{x \to 0^-} f(x) = \lim_{x \to 0^+} f(x) \] Calculating the left-hand limit: \[ \lim_{x \to 0^-} f(x) = a(0) + b = b \] Calculating the right-hand limit: \[ \lim_{x \to 0^+} f(x) = e^{0^2 + 0} = e^0 = 1 \] Setting the two limits equal for continuity: \[ b = 1 \] ### Step 2: Check Differentiability at \( x = 0 \) Next, we need to ensure that the left-hand derivative equals the right-hand derivative at \( x = 0 \). Calculating the left-hand derivative: \[ f'(x) = a \quad \text{for } x < 0 \] Thus, \[ \lim_{x \to 0^-} f'(x) = a \] Calculating the right-hand derivative: For \( x > 0 \), we need to differentiate \( f(x) = e^{x^2 + x} \): Using the chain rule: \[ f'(x) = e^{x^2 + x} \cdot (2x + 1) \] Evaluating this at \( x = 0 \): \[ \lim_{x \to 0^+} f'(x) = e^{0^2 + 0} \cdot (2(0) + 1) = 1 \cdot 1 = 1 \] Setting the left-hand derivative equal to the right-hand derivative: \[ a = 1 \] ### Conclusion We have found that: \[ a = 1 \quad \text{and} \quad b = 1 \] Thus, the values of \( a \) and \( b \) that make the function differentiable at \( x = 0 \) are: \[ (a, b) = (1, 1) \] The correct option is (c) \( a = 1, b = 1 \).
Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)={{:(,ax^(2)-b,|x|lt 1),(,(1)/(|x|),|x| ge1):} is differentiable at x=1, then

Let f(x)={(x-4)/(|x-4|a+b)+a ,x 0 Then, f(x) is continuous at x=4 when (a) a=0,b=0 (b) a=1,b=1 (c) a=-1,b=1 (d) a=1,b=-1

If the function f(x)={{:(,-x,x lt 1),(,a+cos^(-1)(x+b),1 le xle 2):} is differentiable at x=1, then (a)/(b) is equal to

If f(x)={(|x|-3 when x = 1) & g(x)={2-|x| when x = 2 . if h(x)=f(x)+g(x) is discontinuous at exactly one point, then - (a). a=-3, b=0 (b). a=-3, b=-1 (c) a=2, b=1 (d) a=0, b=1

Ifintxe^xcosx dx=a e^x(b(1-x)sinx+c xcosx)+d ,t h e n (a) a=1,b=1,c=-1 (b) a=1/2,b=-,c=1 (c) a=1,b=-1,c=1 (d) a=1/2, b=1,c=-1

Let f(x)={{:(x^(2)-ax+1",", x lt 0),(b(1-x)^(3)",", x ge0):} . If is a differentiable function, then the ordered pair (a, b) is

Let f(x)={(1/(|x|), for |x| ge 1),(ax^2+b,for |x| < 1)) . If f(x) is continuous and differentiable at any point, then (A) a=1/2, b=-3/2 (B) a=-1/2, b=3/2 (C) a=1,b=-1 (D) none of these

Let f(x)={(x-4)/(|x-4|)+a ,x 4 Then f(x) is continous at x=4 when a=0,b=0 b. a=1,b=1 c. a=-1,b=1 d. a=-1,b=-1

If int(xln(x+sqrt(1+x^2)))/(sqrt(1+x^2))dx =asqrt(1+x^2)ln(x+sqrt(1+x^2))+b x+c , then (A) a=1,b =-1 (B) a=1,b=1 (C) a=-1, b=1 (D) a=-1, b=-1

Let f(x)={a x^2+1,\ \ \ \ \ x >1 , \ \ \ \ x+1//2,\ \ \ \ \ xlt=1 Then, f(x) is derivable at x=1 , if a=2 (b) b=1 (c) a=0 (d) a=1//2