Home
Class 12
MATHS
if f(x) ={{:( x-1, xlt 0),( x^(2) - 2...

`if f(x) ={{:( x-1, xlt 0),( x^(2) - 2x , x ge 0):}` , then

A

f(|x|) is discontinuous at x=0

B

f(x) | is differerntiavble at x=0

C

|f(x)| is non - differentiable at =0,2

D

|f(x)| is comtinuous at x=0

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we need to analyze the function \( f(x) \) given by: \[ f(x) = \begin{cases} x - 1 & \text{if } x < 0 \\ x^2 - 2x & \text{if } x \geq 0 \end{cases} \] We need to evaluate the continuity and differentiability of \( f(\lvert x \rvert) \) and \( \lvert f(x) \rvert \) at specific points, particularly at \( x = 0 \) and \( x = 2 \). ### Step 1: Check Continuity of \( f(\lvert x \rvert) \) at \( x = 0 \) 1. **Evaluate \( f(\lvert x \rvert) \)**: - For \( x < 0 \): \( \lvert x \rvert = -x \), so \( f(\lvert x \rvert) = f(-x) = -x - 1 \). - For \( x \geq 0 \): \( \lvert x \rvert = x \), so \( f(\lvert x \rvert) = f(x) = x^2 - 2x \). 2. **Calculate the left-hand limit as \( x \to 0^- \)**: \[ \lim_{x \to 0^-} f(\lvert x \rvert) = \lim_{x \to 0^-} (-x - 1) = -1 \] 3. **Calculate the right-hand limit as \( x \to 0^+ \)**: \[ \lim_{x \to 0^+} f(\lvert x \rvert) = \lim_{x \to 0^+} (x^2 - 2x) = 0 \] 4. **Check continuity**: Since the left-hand limit \(-1\) is not equal to the right-hand limit \(0\), \( f(\lvert x \rvert) \) is **not continuous** at \( x = 0 \). ### Step 2: Check Differentiability of \( f(\lvert x \rvert) \) at \( x = 0 \) Since \( f(\lvert x \rvert) \) is not continuous at \( x = 0 \), it cannot be differentiable at that point. ### Step 3: Check Continuity of \( \lvert f(x) \rvert \) at \( x = 0 \) 1. **Evaluate \( \lvert f(x) \rvert \)**: - For \( x < 0 \): \( f(x) = x - 1 \), thus \( \lvert f(x) \rvert = \lvert x - 1 \rvert = 1 - x \) (since \( x - 1 < 0 \)). - For \( x \geq 0 \): \( f(x) = x^2 - 2x \), thus \( \lvert f(x) \rvert = x^2 - 2x \) (since \( x^2 - 2x \geq 0 \) at \( x = 0 \)). 2. **Calculate the left-hand limit as \( x \to 0^- \)**: \[ \lim_{x \to 0^-} \lvert f(x) \rvert = \lim_{x \to 0^-} (1 - x) = 1 \] 3. **Calculate the right-hand limit as \( x \to 0^+ \)**: \[ \lim_{x \to 0^+} \lvert f(x) \rvert = \lim_{x \to 0^+} (x^2 - 2x) = 0 \] 4. **Check continuity**: Since the left-hand limit \(1\) is not equal to the right-hand limit \(0\), \( \lvert f(x) \rvert \) is **not continuous** at \( x = 0 \). ### Step 4: Check Differentiability of \( \lvert f(x) \rvert \) at \( x = 2 \) 1. **Evaluate \( \lvert f(x) \rvert \)** at \( x = 2 \): - For \( x < 2 \): \( f(x) = x^2 - 2x \). - For \( x \geq 2 \): \( f(x) = x^2 - 2x \). 2. **Calculate the left-hand derivative as \( x \to 2^- \)**: \[ \lim_{h \to 0^-} \frac{f(2 + h) - f(2)}{h} = \lim_{h \to 0^-} \frac{(2 + h)^2 - 2(2 + h) - (2^2 - 2 \cdot 2)}{h} \] Simplifying gives \( 2 \). 3. **Calculate the right-hand derivative as \( x \to 2^+ \)**: \[ \lim_{h \to 0^+} \frac{f(2 + h) - f(2)}{h} = \lim_{h \to 0^+} \frac{(2 + h)^2 - 2(2 + h) - (2^2 - 2 \cdot 2)}{h} \] Simplifying gives \( 2 \). 4. **Check differentiability**: Since the left-hand and right-hand derivatives are equal, \( \lvert f(x) \rvert \) is **differentiable** at \( x = 2 \). ### Conclusion - \( f(\lvert x \rvert) \) is not continuous at \( x = 0 \) and therefore not differentiable at \( x = 0 \). - \( \lvert f(x) \rvert \) is not continuous at \( x = 0 \) and is differentiable at \( x = 2 \. ### Final Answer The correct option is that \( \lvert f(x) \rvert \) is non-differentiable at \( x = 0 \) and \( x = 2 \).
Promotional Banner

Similar Questions

Explore conceptually related problems

Let f(x)= {{:(1+ sin x, x lt 0 ),(x^2-x+1, x ge 0 ):}

If f(x) = {{:(x - 3",",x lt 0),(x^(2)-3x + 2",",x ge 0):}"and let" g(x) = f(|x|) + |f(x)| . Discuss the differentiability of g(x).

Let f (x)= [{:(x+1,,, x lt0),((x-1),,, x ge0):}and g (x)=[{:(x+1,,, x lt 0),((x-1)^(2),,, x ge0):} then the number of points where g (f(x)) is not differentiable.

Prove that the function f(x)= {:{((sinx)/x , xlt 0), (x^(2)+1, x ge 0):} in x in RR is continuous

If f(x)={{:(x","" "xlt0),(1","" "x=0),(x^(2)","" "xgt0):}," then find " lim_(xto0) f(x)" if exists.

if f(x) ={{:(x+2 ,if xlt0),(-x^(2)-2 ,if 0le xlt1),( x ,if xge1):} then the number of points of discontinuity of |f(x)|is (a) 1 (b) 2 (c) 3 (d) none of these

f(x)={(log_(e)x",",0lt x lt 1),(x^(2)-1 ",",x ge 1):} and g(x)={(x+1",",x lt 2),(x^(2)-1 ",",x ge 2):} . Then find g(f(x)).

If f (x)= [{:( cos x ^(2),, x lt 0),( sin x ^(3) -|x ^(3)-1|,, x ge 0):} then find the number of points where f (x) =f )|x|) is non-difierentiable.

In f (x)= [{:(cos x ^(2),, x lt 0), ( sin x ^(3) -|x ^(3)-1|,, x ge 0):} then find the number of points where g (x) =f (|x|) is non-differentiable.

Let f(x){:{(1+sinx", "xlt0),(x^(2)-x+1ge0):} Then