Home
Class 12
MATHS
Let lim(n->oo)((x^2+2x+3+sinpix)^n-1)/((...

Let `lim_(n->oo)((x^2+2x+3+sinpix)^n-1)/((x^2+2x+3+sinpix)^n+1)`. then

A

f(x) is continuous and differentiable for all ` x in R`

B

f(X) is continuous but not differentiable for all ` x in R`

C

f(x) is discontinuous at infinite number of points

D

f(x) is discontinuous at finite number of points

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit problem, we will analyze the expression step by step. Given: \[ \lim_{n \to \infty} \frac{(x^2 + 2x + 3 + \sin(\pi x))^n - 1}{(x^2 + 2x + 3 + \sin(\pi x))^n + 1} \] ### Step 1: Define the function Let: \[ f(x) = x^2 + 2x + 3 + \sin(\pi x) \] Then the limit can be rewritten as: \[ \lim_{n \to \infty} \frac{f(x)^n - 1}{f(x)^n + 1} \] ### Step 2: Analyze the function \( f(x) \) We need to determine the range of \( f(x) \): - The term \( \sin(\pi x) \) oscillates between -1 and 1. - Therefore, the minimum value of \( f(x) \) occurs when \( \sin(\pi x) = -1 \): \[ f(x) \geq x^2 + 2x + 3 - 1 = x^2 + 2x + 2 \] - The minimum value of \( x^2 + 2x + 2 \) can be found by completing the square: \[ x^2 + 2x + 2 = (x + 1)^2 + 1 \geq 1 \] - Hence, \( f(x) \geq 1 \). ### Step 3: Evaluate the limit Since \( f(x) \geq 1 \) for all \( x \), we can analyze the limit: \[ \lim_{n \to \infty} \frac{f(x)^n - 1}{f(x)^n + 1} \] As \( n \to \infty \): - If \( f(x) > 1 \), then \( f(x)^n \to \infty \). - Thus, we can simplify: \[ \frac{f(x)^n - 1}{f(x)^n + 1} \approx \frac{f(x)^n}{f(x)^n} = 1 \] ### Step 4: Conclusion Therefore, we conclude: \[ \lim_{n \to \infty} \frac{(x^2 + 2x + 3 + \sin(\pi x))^n - 1}{(x^2 + 2x + 3 + \sin(\pi x))^n + 1} = 1 \] for all \( x \in \mathbb{R} \). ### Final Answer The limit evaluates to: \[ 1 \]
Promotional Banner

Similar Questions

Explore conceptually related problems

Let f(x)= lim_(n->oo)(sinx)^(2n)

lim_(n->oo)sin(x/2^n)/(x/2^n)

Let f(x)=lim_(n->oo)(log(2+x)-x^(2n)sinx)/(1+x^(2n)) . then

Let f(x)=lim_(n to oo) ((2 sin x)^(2n))/(3^(n)-(2 cos x)^(2n)), n in Z . Then

Let f(x)=lim_(nto oo) (2x^(2n) sin (1)/(x)+x)/(1+x^(2n)) , then which of the following alternative(s) is/ are correct?

If L=("lim")_(nvecoo)(2x3^2x2^3x3^4 x2^(n-1)x3^n)^1/((n^(2+1)) , then the value of L^4 is

if f(x) = lim_(n->oo) 2/n^2(sum_(k=1)^n kx)((3^(nx)-1)/(3^(nx)+1)) where n in N , then find the sum of all the solution of the equation f(x) = |x^2 - 2|

The function y= f(x) = lim_(n to oo) (x^(2n)-1)/(x^(2n)+1) . Is this function same as the function g(x) = "sgn"(|x|)-1) .

lim_(n->oo) (1.2+2.3+3.4+....+n(n+1))/n^3

Let alpha=lim_(n->oo)((1^3-1^2)+(2^3-2^2)+.....+(n^3-n^2))/(n^4), then alpha is equal to :