Home
Class 12
MATHS
f(x)={{:(((3)/(2))^((cot 3x)/(cot 2x)), ...

`f(x)={{:(((3)/(2))^((cot 3x)/(cot 2x)), 0 le xlt (pi)/(2)),(b+3, x =(pi)/(2)),( (1+|cotx|)^((a tan x|)/b), (pi)/(2) lt xlt pi):}` is continuous at `x= pi/2` , then

A

a=0

B

a=2

C

b=-2

D

b=2

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to ensure that the function \( f(x) \) is continuous at \( x = \frac{\pi}{2} \). This means that the left-hand limit (LHL), right-hand limit (RHL), and the value of the function at that point must all be equal. ### Step 1: Calculate the Left-Hand Limit (LHL) as \( x \to \frac{\pi}{2}^- \) The function for \( 0 \leq x < \frac{\pi}{2} \) is given by: \[ f(x) = \left( \frac{3}{2} \right)^{\frac{\cot(3x)}{\cot(2x)}} \] We need to find: \[ \text{LHL} = \lim_{x \to \frac{\pi}{2}^-} f(x) = \lim_{h \to 0} f\left(\frac{\pi}{2} - h\right) \] Substituting \( x = \frac{\pi}{2} - h \): \[ \text{LHL} = \lim_{h \to 0} \left( \frac{3}{2} \right)^{\frac{\cot(3(\frac{\pi}{2} - h))}{\cot(2(\frac{\pi}{2} - h))}} \] Calculating the cotangent values: \[ \cot(3(\frac{\pi}{2} - h)) = \cot\left(\frac{3\pi}{2} - 3h\right) = \tan(3h) \] \[ \cot(2(\frac{\pi}{2} - h)) = \cot(\pi - 2h) = -\cot(2h) \] Thus, we have: \[ \text{LHL} = \lim_{h \to 0} \left( \frac{3}{2} \right)^{\frac{\tan(3h)}{-\cot(2h)}} \] Using the fact that \( \cot(2h) = \frac{1}{\tan(2h)} \): \[ \text{LHL} = \lim_{h \to 0} \left( \frac{3}{2} \right)^{-\tan(3h) \tan(2h)} \] As \( h \to 0 \), both \( \tan(3h) \) and \( \tan(2h) \) approach 0. Therefore: \[ \text{LHL} = \left( \frac{3}{2} \right)^{0} = 1 \] ### Step 2: Calculate the Right-Hand Limit (RHL) as \( x \to \frac{\pi}{2}^+ \) For \( \frac{\pi}{2} < x < \pi \), the function is given by: \[ f(x) = (1 + |\cot x|)^{\frac{a \tan x}{b}} \] We need to find: \[ \text{RHL} = \lim_{x \to \frac{\pi}{2}^+} f(x) = \lim_{h \to 0} f\left(\frac{\pi}{2} + h\right) \] Substituting \( x = \frac{\pi}{2} + h \): \[ \text{RHL} = \lim_{h \to 0} \left( 1 + |\cot(\frac{\pi}{2} + h)| \right)^{\frac{a \tan(\frac{\pi}{2} + h)}{b}} \] Calculating the cotangent and tangent: \[ |\cot(\frac{\pi}{2} + h)| = |\tan(h)| \quad \text{and} \quad \tan(\frac{\pi}{2} + h) = -\cot(h) \] Thus: \[ \text{RHL} = \lim_{h \to 0} \left( 1 + \tan(h) \right)^{-\frac{a \cot(h)}{b}} \] As \( h \to 0 \): \[ \text{RHL} = \lim_{h \to 0} \left( 1 + h \right)^{-\frac{a}{b} \cdot \frac{1}{h}} \text{ (using } \tan(h) \approx h \text{ and } \cot(h) \approx \frac{1}{h}) \] This is of the form \( 1^{\infty} \). We can use the exponential limit: \[ \text{RHL} = e^{\lim_{h \to 0} -\frac{a}{b} \cdot \frac{1}{h} \ln(1 + h)} = e^{\lim_{h \to 0} -\frac{a}{b} \cdot \frac{h}{h}} = e^{-\frac{a}{b}} \] ### Step 3: Set Limits Equal for Continuity Since \( f\left(\frac{\pi}{2}\right) = b + 3 \), we have: 1. \( b + 3 = 1 \) (from LHL) 2. \( e^{-\frac{a}{b}} = 1 \) (from RHL) From the first equation: \[ b = -2 \] From the second equation: \[ -\frac{a}{b} = 0 \implies a = 0 \text{ (since } b \neq 0\text{)} \] ### Final Result Thus, the values of \( a \) and \( b \) are: \[ \boxed{a = 0, b = -2} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)={(((1-sin^(3)x))/(3cos^(2)x)",",x lt (pi)/(2)),(a",",x=(pi)/(2)),((b(1-sinx))/((pi-2x)^(2))",",x gt (pi)/(2)):} is continuous at x=(pi)/(2) , then the value of ((b)/(a))^(5//3) is

If f(x)={((1+|cosx|)^(p/(|cos x|)), , 0 lt x lt (pi)/2),(q, , x=(pi)/2),(e^([cotl(x-(pi)/2)//cot m (x- (pi)/2)]), , (pi)/2 lt x lt pi):} is a continuous function on (0,pi) then the value of p and q are respectively?

If f(x)={m x+1,xlt=pi/2sinx+n ,x >pi/2 is continuous at x=pi/2, then

If f(x)=[{:(mx+1,if x le (pi)/(2)),(sinx+n,ifxgt(pi)/(2)):} is continuous at x = (pi)/(2) , then

If f(x)={{:(tan((pi)/(4)-x)/(cot2x)",",x ne(pi)/(4)),(k",",x=(pi)/(4)):} is continuous at x=(pi)/(4) , then the value of k is

Let f(x) = {{:(-2 sin x,"for",-pi le x le - (pi)/(2)),(a sin x + b,"for",-(pi)/(2) lt x lt (pi)/(2)),(cos x,"for",(pi)/(2) le x le pi):} . If f is continuous on [-pi, pi) , then find the values of a and b .

f(x)= {:{(x+asqrt2 sin x ,, 0 le x lt pi/4),( 2x cot x +b , , pi/4 le x le pi/2), (a cos 2 x - b sin x , , pi/2 lt x le pi):} continuous function AA x in [ 0,pi] " then " 5(a/b)^(2) equals ....

Solve: tan 3x = cot 5x , ( 0 lt x lt 2pi).

Let f(x)={(sinx+cosx",",0 lt x lt (pi)/(2)),(a",",x=pi//2),(tan^(2)x+"cosec"x",",pi//2 lt x lt pi):} Then its odd extension is

Let f(x) ={{:( x+2, 0 le x lt 2),( 6-x, x ge 2):}, g(x) ={{:( 1+ tan x, 0le x lt (pi) /(4)),( 3-cotx,(pi)/(4) le x lt pi ):} f(g(x)) is