Home
Class 12
MATHS
Let f(x)={(e^x-1+ax)/x^2, x>0 and b, x=...

Let `f(x)={(e^x-1+ax)/x^2, x>0 and b, x=0 and sin(x/2)/x , x<0` , then

A

f(X) is continuous at x=0 if a=- 1, ` b=(1)/(2)`

B

f(x) is discontinuous at x=0 if b`bne (1) /(2)`

C

f(x) has irremovable diisontinuity at x-0, if `a ne -1 `

D

f(x) has removable discontinuity at `x=0 if a-=-1, bne (1)/(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the function \( f(x) \) defined as follows: \[ f(x) = \begin{cases} \frac{e^x - 1 + ax}{x^2} & \text{if } x > 0 \\ b & \text{if } x = 0 \\ \frac{\sin(x/2)}{x} & \text{if } x < 0 \end{cases} \] We need to determine the conditions under which the function is continuous at \( x = 0 \). ### Step 1: Find the left-hand limit as \( x \) approaches 0 For \( x < 0 \), we have: \[ f(x) = \frac{\sin(x/2)}{x} \] We need to calculate: \[ \lim_{x \to 0^-} f(x) = \lim_{x \to 0^-} \frac{\sin(x/2)}{x} \] Using the substitution \( y = x/2 \) (thus \( x = 2y \)), we rewrite the limit: \[ \lim_{y \to 0} \frac{\sin(y)}{2y} = \frac{1}{2} \cdot \lim_{y \to 0} \frac{\sin(y)}{y} = \frac{1}{2} \cdot 1 = \frac{1}{2} \] So, \[ \lim_{x \to 0^-} f(x) = \frac{1}{2} \] ### Step 2: Find the right-hand limit as \( x \) approaches 0 For \( x > 0 \), we have: \[ f(x) = \frac{e^x - 1 + ax}{x^2} \] We need to calculate: \[ \lim_{x \to 0^+} f(x) = \lim_{x \to 0^+} \frac{e^x - 1 + ax}{x^2} \] Using the Taylor series expansion for \( e^x \) around \( x = 0 \): \[ e^x = 1 + x + \frac{x^2}{2} + O(x^3) \] Substituting this into our limit gives: \[ e^x - 1 = x + \frac{x^2}{2} + O(x^3) \] Thus, \[ e^x - 1 + ax = x + \frac{x^2}{2} + ax = (1 + a)x + \frac{x^2}{2} \] Now substituting this back into our limit: \[ \lim_{x \to 0^+} \frac{(1 + a)x + \frac{x^2}{2}}{x^2} = \lim_{x \to 0^+} \left( \frac{(1 + a)}{x} + \frac{1}{2} \right) \] As \( x \to 0^+ \), the term \( \frac{(1 + a)}{x} \) will approach infinity unless \( 1 + a = 0 \). Therefore, for the limit to exist and be finite, we must have: \[ 1 + a = 0 \implies a = -1 \] If \( a = -1 \): \[ \lim_{x \to 0^+} f(x) = \frac{1}{2} \] ### Step 3: Set the function value at \( x = 0 \) For \( f(x) \) to be continuous at \( x = 0 \), we need: \[ \lim_{x \to 0^-} f(x) = \lim_{x \to 0^+} f(x) = f(0) \] Thus, we have: \[ \frac{1}{2} = b \] ### Conclusion For \( f(x) \) to be continuous at \( x = 0 \): 1. \( a = -1 \) 2. \( b = \frac{1}{2} \) ### Final Answer The function \( f(x) \) is continuous at \( x = 0 \) if \( a = -1 \) and \( b = \frac{1}{2} \). ---
Promotional Banner

Similar Questions

Explore conceptually related problems

Let d/(dx) (F(x))= e^(sinx)/x, x>0 . If int_1^4 2e^sin(x^2)/x dx = F(k)-F(1) , then possible value of k is:

Let f(x)={x^2|(cos)pi/x|, x!=0 and 0,x=0,x in RR, then f is

Let f(x)={x+1,x >0, 2-x ,xlt=0 and g(x)={x+3,x 0)g(f(x)).

let f(x) = {:{( x^(2) , x le 0) , ( ax , x gt 0):} then f (x) is derivable at x = 0 if

Let f(x)={(1+3x)^(1/x),x!=0 and e^3,x=0. Discuss the continuity of f(x) at (a)x=0, (b) x=1.

Let f(x) = (e^x x cosx-x log_e(1+x)-x)/x^2, x!=0. If f(x) is continuous at x = 0, then f(0) is equal to

Let f(x)={{:(,x^(n)sin\ (1)/(x),x ne 0),(,0,x=0):} Then f(x) is continuous but not differentiable at x=0 . If

Let f(x)=(sin x)/(x), x ne 0 . Then f(x) can be continous at x=0, if

Let f(x) = ax^(2) - bx + c^(2), b ne 0 and f(x) ne 0 for all x in R . Then

If f(x)={(cos^2x-sin^2x-1)/(sqrt(x^2+1)-1), x!=0,and f(x)=k , x=0" is continuous at "x=0,"find " k