Home
Class 12
MATHS
Find the value of a ,b if f(x) = {((a e^...

Find the value of `a ,b` if `f(x) = {((a e^(1//|x+2|) - 1)/(2-e^(1//|x+2|)),; -3 lt x lt -2), (b,; x = -2), (sin((x^4-16)/(x^5+32)),; -2 lt x lt 0):}` is continuous at `x = -2.`

A

` a=sin "" (2)/(5)`

B

`b=-sin ""(2)/(5)`

C

` a=- sin "" (1)/(5)`

D

`b=sin "" (1)/(5)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the values of \( a \) and \( b \) such that the function \[ f(x) = \begin{cases} \frac{a e^{\frac{1}{|x+2|}} - 1}{2 - e^{\frac{1}{|x+2|}} & \text{for } -3 < x < -2 \\ b & \text{for } x = -2 \\ \sin\left(\frac{x^4 - 16}{x^5 + 32}\right) & \text{for } -2 < x < 0 \end{cases} \] is continuous at \( x = -2 \), we need to ensure that the left-hand limit (LHL) and right-hand limit (RHL) at \( x = -2 \) equal \( f(-2) \). ### Step 1: Calculate the Left-Hand Limit (LHL) as \( x \to -2^- \) The LHL is given by: \[ \lim_{x \to -2^-} f(x) = \lim_{x \to -2^-} \frac{a e^{\frac{1}{|x+2|}} - 1}{2 - e^{\frac{1}{|x+2|}}} \] As \( x \to -2^- \), \( |x+2| = -(x+2) \) and approaches \( 0^+ \). Thus, we can substitute \( h = -2 - x \) which implies \( h \to 0^+ \) as \( x \to -2^- \). Therefore: \[ \lim_{h \to 0^+} \frac{a e^{\frac{1}{h}} - 1}{2 - e^{\frac{1}{h}}} \] ### Step 2: Simplifying the Limit As \( h \to 0^+ \), \( e^{\frac{1}{h}} \to \infty \). Thus, we can rewrite the limit: \[ \lim_{h \to 0^+} \frac{a e^{\frac{1}{h}} - 1}{2 - e^{\frac{1}{h}}} = \lim_{h \to 0^+} \frac{a e^{\frac{1}{h}}}{-e^{\frac{1}{h}}} = \lim_{h \to 0^+} -a \] This gives us: \[ \text{LHL} = -a \] ### Step 3: Calculate the Right-Hand Limit (RHL) as \( x \to -2^+ \) The RHL is given by: \[ \lim_{x \to -2^+} f(x) = \lim_{x \to -2^+} \sin\left(\frac{x^4 - 16}{x^5 + 32}\right) \] ### Step 4: Simplifying the RHL We can factor the numerator and denominator: \[ x^4 - 16 = (x^2 - 4)(x^2 + 4) = (x-2)(x+2)(x^2 + 4) \] \[ x^5 + 32 = (x + 2)(x^4 - 2x^3 + 4x^2 - 8x + 16) \] Thus, we have: \[ \lim_{x \to -2^+} \frac{(x+2)(x^2 - 4)(x^2 + 4)}{(x+2)(x^4 - 2x^3 + 4x^2 - 8x + 16)} \] Cancelling \( (x + 2) \): \[ \lim_{x \to -2^+} \frac{(x^2 - 4)(x^2 + 4)}{x^4 - 2x^3 + 4x^2 - 8x + 16} \] Evaluating this limit gives: \[ \frac{(-2^2 - 4)(-2^2 + 4)}{-2^4 + 2(-2)^3 + 4(-2)^2 - 8(-2) + 16} = \frac{(0)(0)}{0} = \text{Indeterminate} \] Using L'Hôpital's Rule or further simplification, we find: \[ \text{RHL} = -\frac{8}{-16} = \frac{1}{2} \] ### Step 5: Setting the Limits Equal For continuity at \( x = -2 \): \[ -a = \frac{1}{2} \quad \text{and} \quad b = \frac{1}{2} \] ### Step 6: Solving for \( a \) and \( b \) From \( -a = \frac{1}{2} \): \[ a = -\frac{1}{2} \] And from \( b = \frac{1}{2} \): \[ b = \frac{1}{2} \] ### Final Values Thus, the values of \( a \) and \( b \) are: \[ \boxed{a = -\frac{1}{2}, b = \frac{1}{2}} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

F(x) = {( (sin(a+2)x + sin x)/x , x lt 0), (b , x = 0), (((x + 3x^2 )^(1/3) - x^(1/3))/x^(4/3)), x gt 0):} Function is continuous at x = 0, find a + 2b .

y = cos ^(-1)((1 - x^(2))/(1+ x^(2))) 0 lt x lt 1

Let f (x) be a continous function in [-1,1] such that f (x)= [{:((ln (ax ^(2)+ bx +c))/(x ^(2)),,, -1 le x lt 0),(1 ,,, x =0),((sin (e ^(x ^(2))-1))/(x ^(2)),,, 0 lt x le 1):} Then which of the following is/are corrent

y = cos ^(-1)((2x)/(1 +x^(2))),-1 lt x lt1 . find dy/dx

The value of k + f(0) so that f (x)={{:((sin (4k-1)x)/(3x)"," , x lt 0),((tan (4k +1)x )/(5x)"," , 0 lt x lt (pi)/(2)), ( 1"," , x =0):} can bemade continous at x=0 is:

Find the maximum and minimum values of the function f(x) = (sin x)/(1+ tan x) ,(0 lt x lt 2pi) .

y = sin ^(-1)((1 - x^(2))/(1+ x^(2))) 0 lt x lt 1 find dy/dx

Let a , b in R,(a in 0) . If the funtion f defined as f(x)={{:(,(2x^(2))/(a),0 le x lt 1),(,a,1 le x lt sqrt2),(,(2b^(2)-4b)/(x^(3)),sqrt2lt x lt oo):} is a continous in [0,oo) . Then, (a,b)=

Solve for x : sin^(- 1)(sin((2x^2+4)/(1+x^2)))lt pi-3

Let f(x) = {{:({1 + |sin x|}^(a//|sin x|)",",-pi//6 lt x lt 0),(b",",x = 0),(e^(tan 2x//tan 3x)",",0 lt x lt pi//6):} Determine a and b such that f(x) is continuous at x = 0