Home
Class 12
MATHS
If f(x)={{:(,(x log cos x)/(log(1+x^(2))...

If f(x)=`{{:(,(x log cos x)/(log(1+x^(2))),x ne 0),(,0,x=0):}` then

A

f(X) is not continuous at x=0

B

f(x) is continuous at x=0

C

f(x) is continuous at x=0 but not differentiable at x=0

D

f(x) is discontinuous at x=0

Text Solution

AI Generated Solution

The correct Answer is:
To determine the continuity of the function \( f(x) \) defined as: \[ f(x) = \begin{cases} \frac{x \log(\cos x)}{\log(1 + x^2)} & \text{if } x \neq 0 \\ 0 & \text{if } x = 0 \end{cases} \] we need to check if \( \lim_{x \to 0} f(x) = f(0) \). ### Step 1: Evaluate \( f(0) \) From the definition of the function, we have: \[ f(0) = 0 \] ### Step 2: Evaluate \( \lim_{x \to 0} f(x) \) We need to find the limit of \( f(x) \) as \( x \) approaches 0. For \( x \neq 0 \): \[ \lim_{x \to 0} f(x) = \lim_{x \to 0} \frac{x \log(\cos x)}{\log(1 + x^2)} \] ### Step 3: Check the form of the limit Substituting \( x = 0 \) directly into the limit gives us: \[ \frac{0 \cdot \log(\cos(0))}{\log(1 + 0^2)} = \frac{0 \cdot \log(1)}{\log(1)} = \frac{0}{0} \] This is an indeterminate form \( \frac{0}{0} \), so we can apply L'Hôpital's Rule. ### Step 4: Apply L'Hôpital's Rule Differentiate the numerator and denominator: - **Numerator**: \( \frac{d}{dx}(x \log(\cos x)) \) using the product rule: \[ \frac{d}{dx}(x \log(\cos x)) = \log(\cos x) + x \cdot \frac{d}{dx}(\log(\cos x)) = \log(\cos x) - x \tan x \] - **Denominator**: \( \frac{d}{dx}(\log(1 + x^2)) \): \[ \frac{d}{dx}(\log(1 + x^2)) = \frac{2x}{1 + x^2} \] ### Step 5: Rewrite the limit using derivatives Now we rewrite the limit: \[ \lim_{x \to 0} \frac{\log(\cos x) - x \tan x}{\frac{2x}{1 + x^2}} \] This simplifies to: \[ \lim_{x \to 0} \frac{(\log(\cos x) - x \tan x)(1 + x^2)}{2x} \] ### Step 6: Substitute \( x = 0 \) again Substituting \( x = 0 \): \[ \log(\cos(0)) = \log(1) = 0 \] \[ \tan(0) = 0 \] Thus, we have: \[ \frac{(0 - 0)(1 + 0^2)}{2 \cdot 0} = \frac{0}{0} \] ### Step 7: Apply L'Hôpital's Rule again Since we still have \( \frac{0}{0} \), we apply L'Hôpital's Rule again. - Differentiate the numerator again: \[ \frac{d}{dx}(\log(\cos x) - x \tan x) = -\tan x + \tan x + x \sec^2 x = x \sec^2 x \] - Differentiate the denominator: \[ \frac{d}{dx}(2x) = 2 \] ### Step 8: Rewrite the limit again Now we have: \[ \lim_{x \to 0} \frac{x \sec^2 x}{2} \] ### Step 9: Substitute \( x = 0 \) Substituting \( x = 0 \): \[ \frac{0 \cdot \sec^2(0)}{2} = \frac{0 \cdot 1}{2} = 0 \] ### Conclusion Since: \[ \lim_{x \to 0} f(x) = 0 = f(0) \] Thus, \( f(x) \) is continuous at \( x = 0 \). ### Final Answer The function \( f(x) \) is continuous at \( x = 0 \). ---
Promotional Banner

Similar Questions

Explore conceptually related problems

f(x)={{:((1-cos2x)/(x^(2)),if x ne 0),(5, if x = 0):} at x = 0 .

If f(x)={{:(x^(p+1)cos.(1)/(x)":", x ne 0),(0":", x=0):} then at x = 0 the function f(x) is

Check the continuity of f(x)={{:((1-cos2x)/(x^(2)),if x ne 0),(5, if x = 0):} at x = 0 .

Let f(x)={{:((log(1+ax)-log(1-bx))/x, x ne 0), (k,x=0):} . Find 'k' so that f(x) is continuous at x = 0.

If f(x) = {{:((log(1+2ax)-log(1-bx))/(x)",",x ne 0),(" "k",",x = 0):} is continuous at x = 0, then k is equal to

Let f(x) ={{:((cos""(1)/(x))(log(1+x))^(2),xge0),(0,xle0):} . Prove that f(x) if differentiable but derivative is not continuous at x=0.

If f(x)={:{(xe^(-(1/(|x|) + 1/x)), x ne 0),(0 , x =0 ):} then f(x) is

If f(x)={{:(,((4^(x)-1)^(3))/(sin(x//4)log(1+x^(2)//3)),x ne 0),(,k,x=0):} is a continous at x=0, then k=

If the function g(x) {{:((e^(px) + log _(e) (1+4x)+q)/(x^(3))","x ne 0),(r"," x=0):} continuous at x=0 , then find the values of p,q and r.

The value of k for which f(x)= {((1-cos 2x )/(x^2 )", " x ne 0 ),(k ", "x=0):} continuous at x=0, is :