Home
Class 12
MATHS
If f(x) ={{:( (a cos x+bx sin x+ce^(x)-...

If `f(x) ={{:( (a cos x+bx sin x+ce^(x)-2x)/(x^(2)), xne 0),( 0, x=0):}` is differentiable at `x=0`, then (a) `a+b+c=2` (b) `a+b=-4` (c) `f'(0)=1/3` (d) `a-c=4`

A

`a+b+c=2`

B

`a+b=-4`

C

`f'(0)=1//3`

D

`a-c=4`

Text Solution

AI Generated Solution

The correct Answer is:
To determine the values of \(a\), \(b\), and \(c\) such that the function \[ f(x) = \begin{cases} \frac{a \cos x + b x \sin x + c e^x - 2x}{x^2} & \text{if } x \neq 0 \\ 0 & \text{if } x = 0 \end{cases} \] is differentiable at \(x = 0\), we will follow these steps: ### Step 1: Check the limit as \(x\) approaches 0 For \(f(x)\) to be differentiable at \(x = 0\), the limit \[ \lim_{x \to 0} \frac{f(x) - f(0)}{x} = \lim_{x \to 0} \frac{f(x)}{x} \] must exist. Since \(f(0) = 0\), we need to compute: \[ \lim_{x \to 0} \frac{a \cos x + b x \sin x + c e^x - 2x}{x^2} \] ### Step 2: Apply L'Hôpital's Rule Since both the numerator and denominator approach 0 as \(x \to 0\), we can apply L'Hôpital's Rule: \[ \lim_{x \to 0} \frac{f(x)}{x} = \lim_{x \to 0} \frac{-a \sin x + b(\sin x + x \cos x) + c e^x - 2}{2x} \] ### Step 3: Evaluate the limit As \(x \to 0\): - \(\sin x \to 0\) - \(\cos x \to 1\) - \(e^x \to 1\) Substituting these into the limit gives: \[ \lim_{x \to 0} \frac{-a(0) + b(0 + 0) + c(1) - 2}{0} = \frac{c - 2}{0} \] For this limit to exist, the numerator must also approach 0, thus: \[ c - 2 = 0 \implies c = 2 \] ### Step 4: Substitute \(c\) back into the limit Now substituting \(c = 2\) back into the limit: \[ \lim_{x \to 0} \frac{a \cos x + b x \sin x + 2 e^x - 2x}{x^2} \] ### Step 5: Apply L'Hôpital's Rule again We apply L'Hôpital's Rule again: \[ \lim_{x \to 0} \frac{-a \sin x + b(\sin x + x \cos x) + 2 e^x - 2}{2x} \] As \(x \to 0\): \[ \lim_{x \to 0} \frac{-a(0) + b(0 + 0) + 2(1) - 2}{0} = \frac{2 - 2}{0} = 0 \] ### Step 6: Set up the equation for \(a\) and \(b\) Now we need to differentiate again: \[ \lim_{x \to 0} \frac{-a \cos x + b(\cos x + \cos x - x \sin x) + 2 e^x}{6x} \] As \(x \to 0\): \[ \lim_{x \to 0} \frac{-a(1) + b(1 + 1) + 2(1)}{6} = \frac{-a + 2b + 2}{6} \] Setting this equal to 0 gives: \[ -a + 2b + 2 = 0 \implies a = 2b + 2 \] ### Step 7: Find \(a + b\) We also have the earlier limit condition: \[ \lim_{x \to 0} \frac{a + c}{0} = 0 \implies a + c = 0 \implies a + 2 = 0 \implies a = -2 \] Now substituting \(a = -2\) into \(a = 2b + 2\): \[ -2 = 2b + 2 \implies 2b = -4 \implies b = -2 \] ### Summary of values We have found: - \(a = -2\) - \(b = -2\) - \(c = 2\) ### Step 8: Verify the options 1. \(a + b + c = -2 - 2 + 2 = -2\) (not correct) 2. \(a + b = -2 - 2 = -4\) (correct) 3. \(f'(0) = \frac{1}{3}\) (not correct) 4. \(a - c = -2 - 2 = -4\) (not correct) ### Final Answer The correct option is: (b) \(a + b = -4\)
Promotional Banner

Similar Questions

Explore conceptually related problems

f(x) ={{:((x)/(2x^(2)+|x|),xne0),( 1, x=0):} then f(x) is

If f(x)={[e^x+a, xlt0],[x-3, xge0]}, is differentiable at x=0, then a equal to (a) -2 (b) -3 (c) -4 (d) No such value exist

If the function f(x), defined as f(x)={{:((a(1-xsinx)+b cosx+5)/(x^(2)),":", xne0),(3,":",x=0):} is continuous at x=0 , then the value of (b^(4)+a)/(5+a) is equal to

If f(x)=(4+sin2x+a sinx+Bcosx)/(x^(2)) for x!=0 is continuous at x=0 , then A+B+f(0) is

Let f(x)= {(((xsinx+2cos2x)/(2))^((1)/(x^(2))),,,,xne0),(e^(-K//2),,,,x=0):} if f(x) is continous at x=0 then the value of k is (a) 1 (b) 2 (c) 3 (d) 4

If f(x)=a|sinx|+b\ e^(|x|)+c\ |x|^3 and if f(x) is differentiable at x=0 , then a=b=c=0 (b) a=0,\ \ b=0;\ \ c in R (c) b=c=0,\ \ a in R (d) c=0,\ \ a=0,\ \ b in R

Let f(x)={(x-4)/(|x-4|a+b)+a ,x 0 Then, f(x) is continuous at x=4 when (a) a=0,b=0 (b) a=1,b=1 (c) a=-1,b=1 (d) a=1,b=-1

If f(x)={{:((sin2x)/(cx)+(x)/((sqrt(x+a^(2))-a)),,,xne 0"," (alt0)),(b,,,x=0","(bne0)):} and f(x) is continuous at x = 0, then the value of bc is equal to

If f(x)=f(x)={(sin(a+1)x+sinx)/(x), ,x<0,c \ at x=0, (sqrt(x+b x^2)-sqrt(x))/(b xsqrt(x)),xgeq0,f(x) is continuous at x=0,t h e n (a). a=-3/2,b=0,c=1/2 (b) a=-3/2,b=1,c=-1/2 (c) a=-3/2,b in R-[0],c=1/2 (d) none of these

The function f(x)=sin^(-1)(cosx) is discontinuous at x=0 (b) continuous at x=0 (c) differentiable at x=0 (d) none of these