Home
Class 12
MATHS
Consider f(x) =x^(2)+ax+3 and g(x) =x+b...

Consider `f(x) =x^(2)+ax+3 and g(x) =x+band F(x) = lim_( n to oo) (f(x)+x^(2n)g(x))/(1+x^(2n))`
If F(x) is continuous at x=-1, then

A

a+b=-2

B

a-b=3

C

a+b=5

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the functions \( f(x) \) and \( g(x) \) and the limit that defines \( F(x) \). We will also use the condition of continuity at \( x = -1 \). ### Step-by-Step Solution: 1. **Define the Functions**: We have: \[ f(x) = x^2 + ax + 3 \] \[ g(x) = x + b \] 2. **Define \( F(x) \)**: The function \( F(x) \) is defined as: \[ F(x) = \lim_{n \to \infty} \frac{f(x) + x^{2n} g(x)}{1 + x^{2n}} \] 3. **Analyze the Limit**: We need to consider the behavior of the limit as \( n \) approaches infinity. The term \( x^{2n} \) will dominate depending on the value of \( x \): - If \( |x| < 1 \), \( x^{2n} \to 0 \). - If \( |x| = 1 \), \( x^{2n} \) remains 1. - If \( |x| > 1 \), \( x^{2n} \to \infty \). For \( |x| < 1 \): \[ F(x) = \lim_{n \to \infty} \frac{f(x)}{1} = f(x) \] For \( |x| > 1 \): \[ F(x) = \lim_{n \to \infty} \frac{x^{2n} g(x)}{x^{2n}} = g(x) \] 4. **Evaluate at \( x = -1 \)**: Since we are interested in continuity at \( x = -1 \), we need to evaluate \( F(-1) \): \[ F(-1) = \lim_{n \to \infty} \frac{f(-1) + (-1)^{2n} g(-1)}{1 + (-1)^{2n}} \] Here, \( (-1)^{2n} = 1 \) for all \( n \): \[ F(-1) = \frac{f(-1) + g(-1)}{2} \] 5. **Calculate \( f(-1) \) and \( g(-1) \)**: \[ f(-1) = (-1)^2 + a(-1) + 3 = 1 - a + 3 = 4 - a \] \[ g(-1) = -1 + b \] 6. **Set Up the Equation for Continuity**: For \( F(x) \) to be continuous at \( x = -1 \), we need: \[ F(-1) = f(-1) = g(-1) \] Thus, \[ \frac{(4 - a) + (-1 + b)}{2} = 4 - a \] 7. **Simplify the Equation**: Multiplying through by 2: \[ (4 - a) + (-1 + b) = 2(4 - a) \] Simplifying gives: \[ 4 - a - 1 + b = 8 - 2a \] Rearranging leads to: \[ a + b = 5 \] ### Final Answer: Thus, the condition for continuity at \( x = -1 \) gives us: \[ \boxed{a + b = 5} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

Let f(x)=lim_(n->oo)(log(2+x)-x^(2n)sinx)/(1+x^(2n)) . then

Let f(x) and g(x) be two continuous function and h(x)= lim_(n to oo) (x^(2n).f(x)+x^(2m).g(x))/((x^(2n)+1)). if the limit of h(x) exists at x=1, then one root of f(x)-g(x) =0 is _____.

Find the values of a if f(x)=("lim")_(n rarr oo)(a x^(2n)+2)/(x^(2n)+a+1) is continuous at x=1.

Let f(x)=lim_(n rarr oo)(x^(2n-1)+ax^(2)+bx)/(x^(2n)+1). If f(x) is continuous for all x in R then find the values of a and b.

Let f(x)=lim_(ntooo) (x)/(x^(2n)+1). Then f has

if f (x) = lim _(x to oo) (prod_(i=l)^(n ) cos ((x )/(2 ^(l)))) then f '(x) is equal to:

Let f(x)=lim_(n to oo) ((2 sin x)^(2n))/(3^(n)-(2 cos x)^(2n)), n in Z . Then

The function y= f(x) = lim_(n to oo) (x^(2n)-1)/(x^(2n)+1) . Is this function same as the function g(x) = "sgn"(|x|)-1) .

Let function f be defined as f:R^(+)toR^(+) and function g is defined as g:R^(+)toR^(+) . Functions f and g are continuous in their domain. Suppose, the function h(x)=lim_(ntooo)(x^(n)f(x)+x^(2))/(x^(n)+g(x)), x gt0 . If h(x) is continuous in its domain,then f(1).g(1) is equal to (a) 2 (b) 1 (c) 1/2 (d) 0

If f(x) = x^(2) and g(x) = (1)/(x^(3)) . Then the value of (f(x)+g(x))/(f(-x)-g(-x)) at x = 2 is