Home
Class 12
MATHS
Let f(x) ={{:( x+2, 0 le x lt 2),( 6-x, ...

`Let f(x) ={{:( x+2, 0 le x lt 2),( 6-x, x ge 2):}, g(x) ={{:( 1+ tan x, 0le x lt (pi) /(4)),( 3-cotx,(pi)/(4) le x lt pi ):}`
`f(g(x))` is

A

discontinuous at `x=pi//4`

B

differentiable at `x=pi //4`

C

continuous but non - differentiable `x= pi//4`

D

differentiable at` x=pi//4` , but derivative is not continuous

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find \( f(g(x)) \) for the given piecewise functions \( f(x) \) and \( g(x) \). ### Step 1: Define the Functions The functions are defined as follows: \[ f(x) = \begin{cases} x + 2 & \text{for } 0 \leq x < 2 \\ 6 - x & \text{for } x \geq 2 \end{cases} \] \[ g(x) = \begin{cases} 1 + \tan x & \text{for } 0 \leq x < \frac{\pi}{4} \\ 3 - \cot x & \text{for } \frac{\pi}{4} \leq x < \pi \end{cases} \] ### Step 2: Determine the Range of \( g(x) \) We need to evaluate \( g(x) \) in both intervals to find the range. 1. For \( 0 \leq x < \frac{\pi}{4} \): - At \( x = 0 \): \( g(0) = 1 + \tan(0) = 1 \) - At \( x = \frac{\pi}{4} \): \( g\left(\frac{\pi}{4}\right) = 1 + \tan\left(\frac{\pi}{4}\right) = 2 \) - Therefore, the range of \( g(x) \) in this interval is \( [1, 2) \). 2. For \( \frac{\pi}{4} \leq x < \pi \): - At \( x = \frac{\pi}{4} \): \( g\left(\frac{\pi}{4}\right) = 3 - \cot\left(\frac{\pi}{4}\right) = 2 \) - At \( x = \pi \): \( g(\pi) = 3 - \cot(\pi) = 3 - 0 = 3 \) - Therefore, the range of \( g(x) \) in this interval is \( (2, 3) \). Combining both ranges, we find that \( g(x) \) maps to \( [1, 3) \). ### Step 3: Evaluate \( f(g(x)) \) Now we can evaluate \( f(g(x)) \) based on the ranges we found. 1. For \( 0 \leq x < \frac{\pi}{4} \): - Since \( g(x) \) is in \( [1, 2) \), we use the first case of \( f(x) \): \[ f(g(x)) = g(x) + 2 = (1 + \tan x) + 2 = 3 + \tan x \] 2. For \( \frac{\pi}{4} \leq x < \pi \): - Since \( g(x) \) is in \( (2, 3) \), we use the second case of \( f(x) \): \[ f(g(x)) = 6 - g(x) = 6 - (3 - \cot x) = 3 + \cot x \] ### Step 4: Combine Results Thus, we have: \[ f(g(x)) = \begin{cases} 3 + \tan x & \text{for } 0 \leq x < \frac{\pi}{4} \\ 3 + \cot x & \text{for } \frac{\pi}{4} \leq x < \pi \end{cases} \] ### Step 5: Check Continuity and Differentiability at \( x = \frac{\pi}{4} \) To check continuity at \( x = \frac{\pi}{4} \): - Left-hand limit (LHL): \[ \lim_{x \to \frac{\pi}{4}^-} f(g(x)) = 3 + \tan\left(\frac{\pi}{4}\right) = 3 + 1 = 4 \] - Right-hand limit (RHL): \[ \lim_{x \to \frac{\pi}{4}^+} f(g(x)) = 3 + \cot\left(\frac{\pi}{4}\right) = 3 + 1 = 4 \] - Value at \( x = \frac{\pi}{4} \): \[ f(g(\frac{\pi}{4})) = 3 + \cot\left(\frac{\pi}{4}\right) = 4 \] Since LHL = RHL = value at \( x = \frac{\pi}{4} = 4 \), \( f(g(x)) \) is continuous at \( x = \frac{\pi}{4} \). ### Step 6: Check Differentiability at \( x = \frac{\pi}{4} \) - Left-hand derivative (LHD): \[ \lim_{x \to \frac{\pi}{4}^-} \frac{f(g(x)) - 4}{x - \frac{\pi}{4}} = \lim_{x \to \frac{\pi}{4}^-} \frac{(3 + \tan x) - 4}{x - \frac{\pi}{4}} = \lim_{x \to \frac{\pi}{4}^-} \frac{\tan x - 1}{x - \frac{\pi}{4}} = \sec^2\left(\frac{\pi}{4}\right) = 2 \] - Right-hand derivative (RHD): \[ \lim_{x \to \frac{\pi}{4}^+} \frac{f(g(x)) - 4}{x - \frac{\pi}{4}} = \lim_{x \to \frac{\pi}{4}^+} \frac{(3 + \cot x) - 4}{x - \frac{\pi}{4}} = \lim_{x \to \frac{\pi}{4}^+} \frac{\cot x - 1}{x - \frac{\pi}{4}} = -\csc^2\left(\frac{\pi}{4}\right) = -2 \] Since LHD ≠ RHD, \( f(g(x)) \) is not differentiable at \( x = \frac{\pi}{4} \). ### Final Result Thus, we conclude that \( f(g(x)) \) is continuous but not differentiable at \( x = \frac{\pi}{4} \).
Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)={{:(,x^(2)+1,0 le x lt 1),(,-3x+5, 1 le x le 2):}

Let f(x)={{:(1+x",", 0 le x le 2),(3-x"," ,2 lt x le 3):} find (fof) (x).

Let f(x) ={:{(x, "for", 0 le x lt1),( 3-x,"for", 1 le x le2):} Then f(x) is

Let f (x)= [{:(x ^(2)+a,0 le x lt 1),( 2x+b,1le x le 2):}and g (x)=[{:(3x+b,0 le x lt 1),(x ^(3), 1 le x le 2):} If derivative of f(x) w.r.t. g (x ) at x =1 exists and is equal to lamda, then which of the followig is/are correct?

Let f(x) = {{:(-2 sin x,"for",-pi le x le - (pi)/(2)),(a sin x + b,"for",-(pi)/(2) lt x lt (pi)/(2)),(cos x,"for",(pi)/(2) le x le pi):} . If f is continuous on [-pi, pi) , then find the values of a and b .

Evaluate : int_(0)^(3) f(x) dx , where f(x)={(cos2x",",0 le x le (pi)/(2)),(3",",(pi)/(2) le x le 3):}

{:(f(x) = cos x and H_(1)(x) = min{f(t), 0 le t lt x},),(0 le x le (pi)/(2) = (pi)/(2)-x,(pi)/(2) lt x le pi),(f(x) = cos x and H_(2) (x) = max {f(t), o le t le x},),(0 le x le (pi)/(2) = (pi)/(2) - x","(pi)/(2) lt x le pi),(g(x) = sin x and H_(3)(x) = min{g(t),0 le t le x},),(0 le x le (pi)/(2)=(pi)/(2) - x, (pi)/(2) le x le pi),(g(x) = sin x and H_(4)(x) = max{g(t),0 le t le x},),(0 le x le (pi)/(2) = (pi)/(2) - x, (pi)/(2) lt x le pi):} Which of the following is true for H_(3) (x) ?

Let f(x) = {{:( x^(3) + x^(2) - 10 x ,, -1 le x lt 0) , (sin x ,, 0 le x lt x//2) , (1 + cos x ,, pi //2 le x le x ):} then f(x) has

Let f(x) = {{:(x^(2) + 3x",", -1 le x lt 0),(-sin x",", 0 le x lt pi//2),(-1 - cos x",", (pi)/(2) le x le pi):} . Draw the graph of the function and find the following (a) Range of the function (b) Point of inflection (c) Point of local minima

Let f (x)= {{:(x ^(2),0lt x lt2),(2x-3, 2 le x lt3),(x+2, x ge3):} then the tuue equations: