Home
Class 12
MATHS
Let f(x) ={{:( [x],-2le xle -(1)/(2) ),(...

`Let f(x) ={{:( [x],-2le xle -(1)/(2) ),( 2x^(2)-1,-(1)/(2)lt xle2):}and g(x) =f(|x|)+|f(x)|,` where [.] represents the greatest integer function .
the number of point where g(x) is non - differentiable is

A

4

B

5

C

2

D

3

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the functions \( f(x) \) and \( g(x) \) given in the question. ### Step 1: Define the function \( f(x) \) The function \( f(x) \) is defined piecewise as follows: \[ f(x) = \begin{cases} [x] & \text{for } -2 \leq x \leq -\frac{1}{2} \\ 2x^2 - 1 & \text{for } -\frac{1}{2} < x \leq 2 \end{cases} \] ### Step 2: Define the function \( g(x) \) The function \( g(x) \) is defined as: \[ g(x) = f(|x|) + |f(x)| \] ### Step 3: Analyze \( g(x) \) for different intervals 1. **For \( x < -2 \)**: - \( f(|x|) = f(-x) = f(-(-x)) = f(x) \) is not defined since \( -x > 2 \). - So, \( g(x) \) is not defined. 2. **For \( -2 \leq x < -\frac{1}{2} \)**: - \( f(|x|) = f(-x) = [x] \) and \( |f(x)| = |[x]| = -[x] \) (since \( [x] \) is negative). - Thus, \( g(x) = [x] - [x] = 0 \). 3. **For \( -\frac{1}{2} < x < 0 \)**: - \( f(|x|) = f(-x) = 2(-x)^2 - 1 = 2x^2 - 1 \) and \( |f(x)| = |[x]| = 0 \). - Thus, \( g(x) = 2x^2 - 1 \). 4. **For \( 0 \leq x < \frac{1}{2} \)**: - \( f(|x|) = f(x) = 2x^2 - 1 \) and \( |f(x)| = |2x^2 - 1| \). - Thus, \( g(x) = 2x^2 - 1 + |2x^2 - 1| \). 5. **For \( \frac{1}{2} \leq x < 2 \)**: - \( f(|x|) = f(x) = 2x^2 - 1 \) and \( |f(x)| = 2x^2 - 1 \). - Thus, \( g(x) = 2x^2 - 1 + (2x^2 - 1) = 4x^2 - 2 \). ### Step 4: Identify points of non-differentiability To find points of non-differentiability, we check the points where \( g(x) \) changes its definition: 1. **At \( x = -1 \)**: - Left-hand limit: \( g(-1) = 0 \) - Right-hand limit: \( g(-1) = 2(-1)^2 - 1 = 1 \) - Since the left-hand limit does not equal the right-hand limit, \( g(x) \) is discontinuous at \( x = -1 \). 2. **At \( x = -\frac{1}{2} \)**: - Left-hand limit: \( g(-\frac{1}{2}) = 0 \) - Right-hand limit: \( g(-\frac{1}{2}) = 2(-\frac{1}{2})^2 - 1 = 0 \) - Since the left-hand limit equals the right-hand limit, we need to check differentiability. 3. **At \( x = \frac{1}{2} \)**: - Left-hand limit: \( g(\frac{1}{2}) = 2(\frac{1}{2})^2 - 1 = 0 \) - Right-hand limit: \( g(\frac{1}{2}) = 4(\frac{1}{2})^2 - 2 = 0 \) - Since the left-hand limit equals the right-hand limit, we need to check differentiability. 4. **At \( x = 1 \)**: - Left-hand limit: \( g(1) = 4(1)^2 - 2 = 2 \) - Right-hand limit: \( g(1) = 4(1)^2 - 2 = 2 \) - Since the left-hand limit equals the right-hand limit, we need to check differentiability. ### Step 5: Check differentiability at critical points 1. **At \( x = -1 \)**: Non-differentiable (discontinuous). 2. **At \( x = -\frac{1}{2} \)**: Non-differentiable (check derivatives). 3. **At \( x = \frac{1}{2} \)**: Non-differentiable (check derivatives). 4. **At \( x = 1 \)**: Non-differentiable (check derivatives). ### Conclusion The points where \( g(x) \) is non-differentiable are \( x = -1 \), \( x = -\frac{1}{2} \), and \( x = \frac{1}{2} \). Thus, the total number of points where \( g(x) \) is non-differentiable is **3**.
Promotional Banner

Similar Questions

Explore conceptually related problems

Let f(x) ={{:( [x],-2le xle -(1)/(2) ),( 2x^(2)-1,-(1)/(2)lt xle2):}and g(x) =f(|x|)+|f(x)|, where [.] represents the greatest integer function . the number of point where |f(x)| is non - differentiable is

Let f(x) ={{:( [x],-2le xle -(1)/(2) ),( 2x^(2)-1,-(1)/(2)lt xle2):}and g(x) =f(|x|)+|f(x)|, where [.] represents the greatest integer function . the number of point where g(x) is discontinuous is

Let f(x) = [x]^(2) + [x+1] - 3 , where [.] denotes the greatest integer function. Then

Let f(x)=sec^(-1)[1+cos^(2)x], where [.] denotes the greatest integer function. Then the

Let f(x)=x/(1+x^2) and g(x)=(e^(-x))/(1+[x]) (where [.] denote greatest integer function), then

Let f(x)=|x| and g(x)=[x] , (where [.] denotes the greatest integer function) Then, (fog)'(-1) is

if f(x) ={{:((1-|x|)/(1+x),xne-1),(1, x=-1):} then f([2x]) , where [.] represents the greatest integer function , is

Let f (x) = cosec^-1[1 + sin^2x], where [*] denotes the greatest integer function, then the range of f

Let f(x) = [x] , g(x)= |x| and f{g(x)} = h(x) ,where [.] is the greatest integer function . Then h(-1) is

Consider the function f(x)=min{|x^(2)-9|,|x^(2)-1|} , then the number of points where f(x) is non - differentiable is/are