Home
Class 12
MATHS
Let f(x) ={{:( [x],-2le xle -(1)/(2) ),(...

`Let f(x) ={{:( [x],-2le xle -(1)/(2) ),( 2x^(2)-1,-(1)/(2)lt xle2):}and g(x) =f(|x|)+|f(x)|,` where [.] represents the greatest integer function .
the number of point where g(x) is discontinuous is

A

1

B

2

C

3

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To determine the number of points where the function \( g(x) = f(|x|) + |f(x)| \) is discontinuous, we first need to analyze the function \( f(x) \). ### Step 1: Define the function \( f(x) \) The function \( f(x) \) is defined piecewise as follows: - For \( -2 \leq x \leq -\frac{1}{2} \), \( f(x) = [x] \) (the greatest integer function). - For \( -\frac{1}{2} < x \leq 2 \), \( f(x) = 2x^2 - 1 \). ### Step 2: Analyze \( f(|x|) \) and \( |f(x)| \) 1. **For \( |x| \)**: - If \( x \geq 0 \), then \( |x| = x \). - If \( x < 0 \), then \( |x| = -x \). 2. **For \( f(|x|) \)**: - If \( x \geq 0 \): \( f(|x|) = f(x) = 2x^2 - 1 \) for \( 0 \leq x \leq 2 \). - If \( x < 0 \): \( f(|x|) = f(-x) = [ -x ] \) for \( -2 \leq -x \leq -\frac{1}{2} \). 3. **For \( |f(x)| \)**: - If \( -2 \leq x \leq -\frac{1}{2} \): \( f(x) = [x] \) which can be negative. - If \( -\frac{1}{2} < x \leq 2 \): \( f(x) = 2x^2 - 1 \), which is non-negative for \( x \geq \frac{1}{\sqrt{2}} \). ### Step 3: Determine \( g(x) \) Now we can express \( g(x) \) based on the above analysis: - For \( -2 \leq x < -\frac{1}{2} \): \[ g(x) = [|x|] + |[x]| = [ -x ] + |[ -x ]| = [ -x ] + [ -x ] = 2[-x] \] - For \( -\frac{1}{2} < x \leq 2 \): \[ g(x) = f(x) + |f(x)| = (2x^2 - 1) + |(2x^2 - 1)| \] ### Step 4: Identify discontinuities To find points of discontinuity, we need to check where \( g(x) \) changes its definition: 1. **At \( x = -2 \)** and **\( x = -\frac{1}{2} \)**: Check limits. 2. **At \( x = 0 \)**: Check limits. 3. **At \( x = \frac{1}{\sqrt{2}} \)**: Check limits. 4. **At \( x = 2 \)**: Check limits. ### Step 5: Check continuity at critical points 1. **At \( x = -1 \)**: - Left-hand limit: \( g(-1) = 3 \) - Right-hand limit: \( g(-1) = 1 \) - Discontinuous. 2. **At \( x = -\frac{1}{2} \)**: - Left-hand limit: \( g(-\frac{1}{2}) = 1 \) - Right-hand limit: \( g(-\frac{1}{2}) = 0 \) - Discontinuous. 3. **At \( x = \frac{1}{\sqrt{2}} \)**: - Left-hand limit: \( g(\frac{1}{\sqrt{2}}) = 0 \) - Right-hand limit: \( g(\frac{1}{\sqrt{2}}) = 0 \) - Continuous. 4. **At \( x = 2 \)**: - Left-hand limit: \( g(2) = 4 \) - Right-hand limit: \( g(2) = 4 \) - Continuous. ### Conclusion The function \( g(x) \) is discontinuous at two points: \( x = -1 \) and \( x = -\frac{1}{2} \). Thus, the number of points where \( g(x) \) is discontinuous is **2**. ---
Promotional Banner

Similar Questions

Explore conceptually related problems

Let f(x) ={{:( [x],-2le xle -(1)/(2) ),( 2x^(2)-1,-(1)/(2)lt xle2):}and g(x) =f(|x|)+|f(x)|, where [.] represents the greatest integer function . the number of point where g(x) is non - differentiable is

Let f(x) ={{:( [x],-2le xle -(1)/(2) ),( 2x^(2)-1,-(1)/(2)lt xle2):}and g(x) =f(|x|)+|f(x)|, where [.] represents the greatest integer function . the number of point where |f(x)| is non - differentiable is

Let f(x) = [x]^(2) + [x+1] - 3 , where [.] denotes the greatest integer function. Then

Let f(x)=sec^(-1)[1+cos^(2)x], where [.] denotes the greatest integer function. Then the

Let f(x)=x/(1+x^2) and g(x)=(e^(-x))/(1+[x]) (where [.] denote greatest integer function), then

Let f(x)=|x| and g(x)=[x] , (where [.] denotes the greatest integer function) Then, (fog)'(-1) is

if f(x) ={{:((1-|x|)/(1+x),xne-1),(1, x=-1):} then f([2x]) , where [.] represents the greatest integer function , is

f(x)=[x] and g(x)={{:(1",",x gt1),(2",", x le 1):} , (where [.] represents the greatest integer function). Then g(f(x)) is discontinuous at x = _______________

Let f (x) = cosec^-1[1 + sin^2x], where [*] denotes the greatest integer function, then the range of f

Let f(x) = [x] , g(x)= |x| and f{g(x)} = h(x) ,where [.] is the greatest integer function . Then h(-1) is