Home
Class 12
MATHS
Let f(x)={x/2-1,0lt=xlt=1 1/2,1lt=xlt=2}...

Let `f(x)={x/2-1,0lt=xlt=1 1/2,1lt=xlt=2}g(x)=(2x+1)(x-k)+3,0<=x<=oo` then `g(f(x))` is continuous at x=1 if k equal to:

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \( k \) such that \( g(f(x)) \) is continuous at \( x = 1 \), we need to analyze the functions \( f(x) \) and \( g(x) \) given in the problem. ### Step 1: Define the functions The function \( f(x) \) is defined as: \[ f(x) = \begin{cases} \frac{x}{2} - 1 & \text{if } 0 \leq x \leq 1 \\ \frac{1}{2} & \text{if } 1 < x < 2 \end{cases} \] The function \( g(x) \) is defined as: \[ g(x) = (2x + 1)(x - k) + 3 \] ### Step 2: Find \( f(1) \) We first evaluate \( f(1) \): \[ f(1) = \frac{1}{2} - 1 = -\frac{1}{2} \] ### Step 3: Find \( g(f(1)) \) Next, we substitute \( f(1) \) into \( g(x) \): \[ g(f(1)) = g\left(-\frac{1}{2}\right) = (2(-\frac{1}{2}) + 1)(-\frac{1}{2} - k) + 3 \] Calculating the first part: \[ 2(-\frac{1}{2}) + 1 = -1 + 1 = 0 \] Thus, \[ g(f(1)) = 0 \cdot (-\frac{1}{2} - k) + 3 = 3 \] ### Step 4: Find the left-hand limit as \( x \to 1^- \) Now, we calculate the left-hand limit of \( g(f(x)) \) as \( x \) approaches 1 from the left: \[ \lim_{x \to 1^-} f(x) = f(1) = -\frac{1}{2} \] Then, \[ \lim_{x \to 1^-} g(f(x)) = g\left(-\frac{1}{2}\right) = 3 \] ### Step 5: Find the right-hand limit as \( x \to 1^+ \) Next, we calculate the right-hand limit as \( x \) approaches 1 from the right: \[ \lim_{x \to 1^+} f(x) = \frac{1}{2} \] Now substitute into \( g(x) \): \[ g\left(\frac{1}{2}\right) = (2(\frac{1}{2}) + 1)(\frac{1}{2} - k) + 3 \] Calculating the first part: \[ 2(\frac{1}{2}) + 1 = 1 + 1 = 2 \] Thus, \[ g\left(\frac{1}{2}\right) = 2\left(\frac{1}{2} - k\right) + 3 = 1 - 2k + 3 = 4 - 2k \] ### Step 6: Set the left-hand limit equal to the right-hand limit For continuity at \( x = 1 \), we set the left-hand limit equal to the right-hand limit: \[ 3 = 4 - 2k \] ### Step 7: Solve for \( k \) Rearranging the equation: \[ 2k = 4 - 3 \implies 2k = 1 \implies k = \frac{1}{2} \] ### Final Answer The value of \( k \) such that \( g(f(x)) \) is continuous at \( x = 1 \) is: \[ \boxed{\frac{1}{2}} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

Evaluate the following integrals: int_0^9f(x)dx ,w h e r ef(x)={sinx,0 lt=xlt=pi//2 1,pi/2lt=xlt=3 e^(x-3),3lt=xlt=9

Let f(x)={x+1,x >0, 2-x ,xlt=0 and g(x)={x+3,x 0)g(f(x)).

Let f(x)={1+(2x)/a ,0lt=x<1 and ax ,1lt=x<2 If lim_(x->1)f(x) exists ,then a is (a) 1 (b) -1 (c) 2 (d) -2

Let f(x)={x+1,x >0 \n 2-x ,xlt=0 and g(x)={x+3,x 0)g(f(x)).

If f(x)=max{x^3, x^2,1/(64)}AAx in [0,oo),t h e n f(x)={x^2,0lt=xlt=1x^3,x > 0 f(x) = { 1/(64), 0 lt= x lt = 1/4 x^2, 1/4 1 f(x)={1/(64),0lt=xlt=1/8x^2,1/8 1 f(x)={1/(64),0lt=xlt=1/8x^3,x >1/8

Discuss the applicability of Rolles theorem on the function f(x)={(x^2+1 ,, if \ 0lt=xlt=1),(3-x ,,if 1ltxlt=2):}

The relation f is defined by f(x)={x^2,0lt=xlt=3 3x ,3lt=xlt=10 The relation g is defined by g(x)={x^2,0lt=xlt=3 3x ,2lt=xlt=10 Show that f is a function and g is not a function.

The relation f is defined by f(x)={x^2,0lt=xlt=3 3x ,3lt=xlt=10 The relating g is defined by g(x)={x^2,0lt=xlt=3 3x ,2lt=xlt=10 Show that f is a function and g is not a function.

Let f(x) =[{:(asqrt(x+1),0lt xlt3),(bx +2, 3lexlt5):} if f(x) is differentiable at x=3 then find the values of a and b.

If the area of the region {(x , y):0lt=ylt=x^2+1,0lt=ylt=x+1,0lt=xlt=2} is A , then the value of 3A-17 is____