Home
Class 12
MATHS
The number of points where f(x) =[x+1//...

The number of points where `f(x) =[x+1//3]+[x+2//3],`[.] denotes the greatest integer function , is discontinuous for `x in (0,3) ` is _____________.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to determine the number of points where the function \( f(x) = \left\lfloor x + \frac{1}{3} \right\rfloor + \left\lfloor x + \frac{2}{3} \right\rfloor \) is discontinuous in the interval \( (0, 3) \). The greatest integer function \( \lfloor x \rfloor \) is known to be discontinuous at integer values. ### Step-by-Step Solution: 1. **Identify the components of the function**: The function \( f(x) \) consists of two greatest integer functions: \[ f(x) = \left\lfloor x + \frac{1}{3} \right\rfloor + \left\lfloor x + \frac{2}{3} \right\rfloor \] 2. **Determine the intervals for discontinuity**: The greatest integer function \( \lfloor x \rfloor \) is discontinuous at integer values. Therefore, we need to find the points where \( x + \frac{1}{3} \) and \( x + \frac{2}{3} \) are integers. 3. **Set up equations for discontinuity**: - For \( \left\lfloor x + \frac{1}{3} \right\rfloor \): \[ x + \frac{1}{3} = n \quad \text{(where \( n \) is an integer)} \] This gives: \[ x = n - \frac{1}{3} \] - For \( \left\lfloor x + \frac{2}{3} \right\rfloor \): \[ x + \frac{2}{3} = m \quad \text{(where \( m \) is an integer)} \] This gives: \[ x = m - \frac{2}{3} \] 4. **Find integer values of \( n \) and \( m \) in the interval \( (0, 3) \)**: - For \( n = 1 \): \[ x = 1 - \frac{1}{3} = \frac{2}{3} \] - For \( n = 2 \): \[ x = 2 - \frac{1}{3} = \frac{5}{3} \] - For \( n = 3 \): \[ x = 3 - \frac{1}{3} = \frac{8}{3} \] - For \( m = 1 \): \[ x = 1 - \frac{2}{3} = \frac{1}{3} \] - For \( m = 2 \): \[ x = 2 - \frac{2}{3} = \frac{4}{3} \] - For \( m = 3 \): \[ x = 3 - \frac{2}{3} = \frac{7}{3} \] 5. **List all points of discontinuity**: The points of discontinuity found are: - From \( n \): \( \frac{2}{3}, \frac{5}{3}, \frac{8}{3} \) - From \( m \): \( \frac{1}{3}, \frac{4}{3}, \frac{7}{3} \) Combining these, we have: \[ \frac{1}{3}, \frac{2}{3}, \frac{4}{3}, \frac{5}{3}, \frac{7}{3}, \frac{8}{3} \] 6. **Count the unique points**: The unique points of discontinuity in the interval \( (0, 3) \) are: \[ \frac{1}{3}, \frac{2}{3}, \frac{4}{3}, \frac{5}{3}, \frac{7}{3}, \frac{8}{3} \] This gives us a total of **6 points**. ### Final Answer: The number of points where \( f(x) \) is discontinuous for \( x \in (0, 3) \) is **6**.
Promotional Banner

Similar Questions

Explore conceptually related problems

The number of points where f(x) = [sin x + cosx] (where [.] denotes the greatest integer function) x in (0,2pi) is not continuous is

The function f(x) = [x] cos((2x-1)/2) pi where [ ] denotes the greatest integer function, is discontinuous

Let f(x) = [x]^(2) + [x+1] - 3 , where [.] denotes the greatest integer function. Then

The function f(x)=[x]^(2)+[-x^(2)] , where [.] denotes the greatest integer function, is

The value of l = int_0^3([x]+[x+1/3]+[x+2/3])dx where [.] denotes the greatest integer function is equal to

lim_(xrarr0) x^8[(1)/(x^3)] , where [.] ,denotes the greatest integer function is

If [x]^(2)-3[x]+2=0 where [*] denotes the greatest integer function, then

The function defined by f(x) =(-1)^([x^(3)]) ([.] denotes the greatest integer function ) satidfies

f(x)=sin^(-1)((2-3[x])/4) , which [*] denotes the greatest integer function.

The period of the function f(x)=Sin(x +3-[x+3]) where [] denotes the greatest integer function