Home
Class 12
MATHS
Let f(x) and g(x) be two continuous fu...

`Let f(x) and g(x)` be two continuous function and `h(x)= lim_(n to oo) (x^(2n).f(x)+x^(2m).g(x))/((x^(2n)+1)).` if the limit of h(x) exists at x=1, then one root of f(x)-g(x) =0 is _____.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the limit of the function \( h(x) \) as \( n \) approaches infinity and determine the conditions under which it exists at \( x = 1 \). ### Step-by-Step Solution: 1. **Define the function \( h(x) \)**: \[ h(x) = \lim_{n \to \infty} \frac{x^{2n} f(x) + x^{2m} g(x)}{x^{2n} + 1} \] 2. **Consider the limit as \( x \) approaches 1 from the right**: \[ \lim_{x \to 1^+} h(x) = \lim_{x \to 1^+} \lim_{n \to \infty} \frac{x^{2n} f(x) + x^{2m} g(x)}{x^{2n} + 1} \] Here, as \( n \to \infty \) and \( x > 1 \), \( x^{2n} \) dominates over 1 in the denominator. 3. **Simplify the expression**: \[ h(x) = \lim_{n \to \infty} \frac{x^{2n} f(x)}{x^{2n}} + \lim_{n \to \infty} \frac{x^{2m} g(x)}{x^{2n}} = f(x) + \lim_{n \to \infty} \frac{x^{2m} g(x)}{x^{2n}} \] Since \( x^{2n} \to \infty \), the second term goes to 0: \[ h(x) = f(x) \quad \text{for } x > 1 \] 4. **Now consider the limit as \( x \) approaches 1 from the left**: \[ \lim_{x \to 1^-} h(x) = \lim_{x \to 1^-} \lim_{n \to \infty} \frac{x^{2n} f(x) + x^{2m} g(x)}{x^{2n} + 1} \] Here, as \( n \to \infty \) and \( x < 1 \), \( x^{2n} \) approaches 0. 5. **Simplify this expression**: \[ h(x) = \lim_{n \to \infty} \frac{0 \cdot f(x) + x^{2m} g(x)}{1} = x^{2m} g(x) \] Therefore, as \( x \to 1^- \): \[ h(x) = g(x) \quad \text{for } x < 1 \] 6. **Set the limits equal to ensure continuity**: Since \( h(x) \) must exist at \( x = 1 \), we equate the right-hand limit and left-hand limit: \[ f(1) = g(1) \] 7. **Conclusion**: The condition \( f(1) = g(1) \) implies that \( x = 1 \) is a root of the equation \( f(x) - g(x) = 0 \). Thus, one root of \( f(x) - g(x) = 0 \) is: \[ \boxed{1} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If phi(x)=lim_(n->oo)(x^(2n)(f(x)+g(x)))/(1+x^(2n)) then which of the following is correct

Let f(x)=lim_(n->oo)(log(2+x)-x^(2n)sinx)/(1+x^(2n)) . then

Consider f(x) =x^(2)+ax+3 and g(x) =x+band F(x) = lim_( n to oo) (f(x)+x^(2n)g(x))/(1+x^(2n)) If F(x) is continuous at x=-1, then

The function y= f(x) = lim_(n to oo) (x^(2n)-1)/(x^(2n)+1) . Is this function same as the function g(x) = "sgn"(|x|)-1) .

Let f(x)=x^2 and g(x) = 2x + 1 be two real functions. find (f +g)(x) , (f-g)(x) , (fg)(x) , (f/g)(x) .

If f(x)=lim_(nrarroo) ((x^(2)+ax+1)+x^(2n)(2x^(2)+x+b))/(1+x^(2n)) and lim_(xrarrpm1) f(x) exists, then The value of a is

Discuss the continuity of f(x)=(lim)_(n->oo)(x^(2n)-1)/(x^(2n)+1)

If f(x)=lim_(nrarroo)((x^(2)+ax+1)+x^(2n)(2x^(2)+x+b))/(1+x^(2n)) and lim_(xrarrpm1)f(x) exists, then The value of b is

Let function f be defined as f:R^(+)toR^(+) and function g is defined as g:R^(+)toR^(+) . Functions f and g are continuous in their domain. Suppose, the function h(x)=lim_(ntooo)(x^(n)f(x)+x^(2))/(x^(n)+g(x)), x gt0 . If h(x) is continuous in its domain,then f(1).g(1) is equal to (a) 2 (b) 1 (c) 1/2 (d) 0

Let f(x)=lim_(n rarr oo)(x^(2n-1)+ax^(2)+bx)/(x^(2n)+1). If f(x) is continuous for all x in R then find the values of a and b.