Home
Class 12
MATHS
If f(x) = (x)/(1+(log x)(log x)....oo), ...

If `f(x) = (x)/(1+(log x)(log x)....oo), AA x in [1, 3]` is non-differentiable at x = k. Then, the value of `[k^(2)]`, is (where `[*]` denotes greatest integer function).

Text Solution

Verified by Experts

The correct Answer is:
7
Promotional Banner

Similar Questions

Explore conceptually related problems

The function, f(x)=[|x|]-|[x]| where [] denotes greatest integer function:

f(x)=1/sqrt([x]^(2)-[x]-6) , where [*] denotes the greatest integer function.

The range of the function f(x)=2+x-[x-3] is, (where [.] denotes greatest integer function):

Let f(x) = [x]^(2) + [x+1] - 3 , where [.] denotes the greatest integer function. Then

f(x)=sin^-1[log_2(x^2/2)] where [ . ] denotes the greatest integer function.

The range of f(x)=(2+x-[x])/(1-x+[x]) .where [ ] denotes the greatest integer function is

f(x) = 1 + [cosx]x in 0 leq x leq pi/2 (where [.] denotes greatest integer function) then

Domain of f(x)=log(x^2+5x+6)/([x]-1) where [.] denotes greatest integer function:

The value of int_(e)^(pi^(2))[log_(pi)x] d(log_(e)x) (where [.] denotes greatest integer function) is

Find the domain and range of f(x)=log[ cos|x|+1/2] ,where [.] denotes the greatest integer function.