Home
Class 12
MATHS
If the function f(x) =(tan(tanx)-sin(sin...

If the function `f(x) =(tan(tanx)-sin(sinx))/(tanx-sinx) (x !=0)`: is continuous at `x=0`,then find the value of `f (0)`

Text Solution

AI Generated Solution

The correct Answer is:
To determine the value of \( f(0) \) for the function \[ f(x) = \frac{\tan(\tan x) - \sin(\sin x)}{\tan x - \sin x} \quad (x \neq 0) \] and ensure that the function is continuous at \( x = 0 \), we need to find the limit of \( f(x) \) as \( x \) approaches 0. ### Step-by-Step Solution: 1. **Understanding Continuity**: For \( f(x) \) to be continuous at \( x = 0 \), we need to find \( \lim_{x \to 0} f(x) \) and set \( f(0) \) equal to this limit. 2. **Finding the Limit**: \[ \lim_{x \to 0} f(x) = \lim_{x \to 0} \frac{\tan(\tan x) - \sin(\sin x)}{\tan x - \sin x} \] 3. **Using Taylor Series Expansions**: - The Taylor series expansion for \( \tan x \) around \( x = 0 \) is: \[ \tan x = x + \frac{x^3}{3} + O(x^5) \] - The Taylor series expansion for \( \sin x \) around \( x = 0 \) is: \[ \sin x = x - \frac{x^3}{6} + O(x^5) \] 4. **Substituting the Expansions**: - For \( \tan(\tan x) \): \[ \tan(\tan x) = \tan\left(x + \frac{x^3}{3} + O(x^5)\right) \approx x + \frac{x^3}{3} + O(x^5) \] - For \( \sin(\sin x) \): \[ \sin(\sin x) = \sin\left(x - \frac{x^3}{6} + O(x^5)\right) \approx x - \frac{x^3}{6} + O(x^5) \] 5. **Calculating the Numerator**: \[ \tan(\tan x) - \sin(\sin x) \approx \left(x + \frac{x^3}{3}\right) - \left(x - \frac{x^3}{6}\right) = \frac{x^3}{3} + \frac{x^3}{6} = \frac{2x^3}{6} + \frac{x^3}{6} = \frac{x^3}{2} \] 6. **Calculating the Denominator**: \[ \tan x - \sin x \approx \left(x + \frac{x^3}{3}\right) - \left(x - \frac{x^3}{6}\right) = \frac{x^3}{3} + \frac{x^3}{6} = \frac{2x^3}{6} + \frac{x^3}{6} = \frac{x^3}{2} \] 7. **Putting it Together**: \[ f(x) = \frac{\frac{x^3}{2}}{\frac{x^3}{2}} = 1 \quad \text{for } x \neq 0 \] 8. **Finding the Limit**: \[ \lim_{x \to 0} f(x) = 1 \] 9. **Defining \( f(0) \)**: Since the limit exists and equals 1, we set: \[ f(0) = 1 \] ### Final Answer: Thus, the value of \( f(0) \) is \[ \boxed{1} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

The function f(x) = tan^(-1)(tanx) is

If f(x)=(2x+3sinx)/(3x+2sinx) , x!=0 is continuous at x=0 , then find f(0)

If f(x)=(2x+3sinx)/(3x+2sinx),x!=0 is continuous at x=0 , then find f(0)dot

The function f(x)={sinx/x +cosx , x!=0 and f(x) =k at x=0 is continuous at x=0 then find the value of k

The function f(x)=((3^x-1)^2)/(sinx*ln(1+x)), x != 0, is continuous at x=0, Then the value of f(0) is

If the function f(x) = (x(e^(sinx) -1))/( 1 - cos x ) is continuous at x =0 then f(0)=

Evaluate lim_(xto0) (a^(tanx)-a^(sinx))/(tanx-sinx),agt0

Show that the function f(x) given by f(x)={(sinx)/x+cosx ,x!=0 and 2,x=0 is continuous at x=0.

If f(x)=((1-tanx)/(1+sinx))^(cosec x) is to be made continuous at x=0, then f(0) must be equal to

Let f(x) =(e^(tan x)-e^x+ln(secx+tanx)-x)/(tanx-x) be a continuous function at x=0. The value f(0) equals