Home
Class 12
MATHS
Let S={t in R: f(x)=|x-pi|(e^(|x|)-1)sin...

Let `S={t in R: f(x)=|x-pi|(e^(|x|)-1)sin|x|` is not differentiable at t} Then the set S is equal to: (1) `phi` (2) {0} (3) `{pi}` (4) `{0,pi}`

A

`{0,pi}`

B

`phi` ( an empty set)

C

`{0}`

D

`{pi}`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

Set of value of x for which f(x)=sin|x|-|x|+2(x-pi)cos|x| is not differentiable is (A) phi (B) {0} (C) {0, pi} (D) {pi}

If f(x) =int_(0)^(x) sin^(4)t dt , then f(x+2pi) is equal to

If t a nalpha=x/(x+1) and t a nbeta=1/(2x+1) , then alpha+beta is equal to (a) pi//2 (b) pi//3 (c) pi//6 (d) pi//4

If 1+sinx+sin^2x+sin^3x+oo is equal to 4+2sqrt(3),0

Let f and g be two differentiable functins such that: f (x)=g '(1) sin x+ (g'' (2) -1) x g (x) = x^(2) -f'((pi)/(2)) x+ f'(-(pi)/(2)) If phi (x) =f ^(-1) (x) then phi'((pi)/(2) +1) equals to :

Let f(x) = int_(x)^(x+(pi)/(3))|sin theta|d theta(x in [0,pi])

If f(x)= int_(0^(sinx) cos^(-1)t dt +int_(0)^(cosx) sin^(-1)t dt, 0 lt x lt (pi)/(2) then f(pi//4) is equal to

Let f(x)=m ax{2 sin x,1-cosx},x epsilon (0,pi) . Then set of points of non differentiability is

The maximum value of f(x) =int_(0)^(1) t sin (x+pi t)dt is

If f:R rarr [pi/6,pi/2], f(x)=sin^(-1)((x^(2)-a)/(x^(2)+1)) is an onto function, the set of values a is