Home
Class 12
MATHS
Show that the point A ,B ,C with posi...

Show that the point `A ,B ,C` with position vectors ` vec a-2 vec b+3 vec c ,2 vec a+3 vec b-4 vec c` and `-7 vec b+10 vec c` are collinear.

Text Solution

AI Generated Solution

Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • ALGEBRA OF MATRICES

    RD SHARMA ENGLISH|Exercise All Questions|410 Videos
  • APPLICATION OF INTEGRALS

    RD SHARMA ENGLISH|Exercise All Questions|163 Videos

Similar Questions

Explore conceptually related problems

Show that the points with position vectors vec a-2 vec b+3 vec c ,\ -2 vec a+3 vec b- vec c\ a n d\ 4 vec a-7 vec b+7 vec c are collinear.

Show that the points A ,B ,C with position vectors -2 vec a+3 vec b+5 vec c , vec a+2 vec b+3 vec c a n d7 vec a- vec c respectively, are collinear.

Show that the points with position vectors vec a-2 vec b+3 vec c ,-2 vec a+3 vec b+2 vec ca n d-8 vec a+13 vec b are collinear whatever be vec a , vec b , vec cdot

Prove that four points 2 vec a+3 vec b- vec c , vec a-2 vec b+3 vec c ,3 vec a+4 vec b-2 vec c and vec a-6 vec b+6 vec c are coplanar.

If a ,\ b ,\ c are non coplanar vectors prove that the points having the following position vectors are collinear: vec a+ vec b+ vec c ,\ 4 vec a+3 vec b ,\ 10 vec a+7 vec b-2 vec c

Show that the vectors vec a - vec b, vec b - vec c , vec c - vec a are coplaner.

Show that the vectors vec a , vec b and vec c are coplanar if vec a+ vec b , vec b+ vec c and vec c+ vec a are coplanar.

Show that vectors vec a ,\ vec b ,\ vec c are coplanar if vec a+ vec b ,\ vec b+ vec c ,\ vec c+ vec a are coplanar.

Let vec a , vec ba n d vec c , be non-zero non-coplanar vectors. Prove that: vec a-2 vec b+3 vec c ,-2 vec a+3 vec b-4 vec ca n d vec c-3 vec b+5 vec c are coplanar vectors. 2 vec a- vec b+3 vec c , vec a+ vec b-2 vec ca n d vec a+ vec b-3 vec c are non-coplanar vectors.

Show that the vectors vec a-2 vec b+3 vec c , vec a-3 vec b+5 vec ca n d-2 vec a+3 vec b-4 vec c are coplanar, where vec a , vec b , vec c are non-coplanar.