Home
Class 12
MATHS
Evaluate the following integral : int(5c...

Evaluate the following integral : `int(5cos^3x+6sin^3x)/(2sin^2xcos^2x)dx`

Text Solution

AI Generated Solution

To evaluate the integral \[ I = \int \frac{5 \cos^3 x + 6 \sin^3 x}{2 \sin^2 x \cos^2 x} \, dx, \] we can start by splitting the integral into two separate integrals based on the terms in the numerator. ...
Promotional Banner

Topper's Solved these Questions

  • INCREASING AND DECREASING FUNCTION

    RD SHARMA ENGLISH|Exercise All Questions|232 Videos
  • INVERSE TRIGONOMETRIC FUNCTION

    RD SHARMA ENGLISH|Exercise All Questions|531 Videos

Similar Questions

Explore conceptually related problems

int(5cos^3x+7sin^3x)/(3sin^2xcos^2x)dx

Evaluate the following integrals int (cos^(2)x sin x)/(sin x - cos x)dx

Evaluate the following integrals : int(cos^2x-sin^2x)/(sqrt(1+cos4x))dx

Evaluate the following integrals: int frac{sin^6x+cos^6x}{sin^2x cos^2x}dx

Evaluate the following integral: int_0^(pi//2)(cos x)/(1+sin^2x)dx

Evaluate the following integral: int_0^(pi//2)(cos x)/(1+sin^2x)dx

Evaluate the following Integrals. int (cos x)/(1+sin x) dx

Evaluate the following integral: int_0^(pi//2)(cos^2x)/(1+3sin^2x)dx

int(sin^8x-cos^8x)/(1-2sin^2xcos^2x)dx=

int(sin^8x-cos^8x)/(1-2sin^2xcos^2x)dx=