Home
Class 12
MATHS
intcosm xcosn xdx ,m!=n...

`intcosm xcosn xdx ,m!=n`

Text Solution

AI Generated Solution

Promotional Banner

Topper's Solved these Questions

  • INCREASING AND DECREASING FUNCTION

    RD SHARMA ENGLISH|Exercise All Questions|232 Videos
  • INVERSE TRIGONOMETRIC FUNCTION

    RD SHARMA ENGLISH|Exercise All Questions|531 Videos

Similar Questions

Explore conceptually related problems

intsinm xcosn xdx ,m!=n

Integrate: intcosm xcosn x\ dx ,\ \ m!=n

Evaluate: intcot^n xcos e c^2xdx ,n!=-1

The value f the integral int_(-pi)^pisinm xsinn xdx , for m!=n(m , n in I),i s 0 (b) pi (c) pi/2 (d) 2pi

intlogcosx/cos^2xdx

IfI_(m , n)=int_0^(pi/2)sin^m xcos^n xdx , Then show that I_(m , n)=(m-1)/(m+n)I_(m-2,n)(m ,n in N) Hence, prove that I_(m , n)=f(x)={((n-1)(n-3)(m-5)(n-1)(n-3)(n-5))/((m+n)(m+n-2)(m+n-4))pi/4 when both m and n are even ((m-1)(m-3)(m-5)(n-1)(n-3)(n-5))/((m+n)(m+n-2)(m+n-4))}

intsinxcos^3xdx

intcosxtan^3xdx

intlogx.sin^-1xdx

STATEMENT-1 : If f(x)=int(dx)/(sin^(1//2)xcos^(7//2)x) , then the value of f((pi)/(4))-f(0) is equal to (12)/(5) . and STATEMENT-2 : To find the intsin^(m)xcos^(n)xdx if m+n=-ve even, then we can substitute tanx=t .