Home
Class 12
MATHS
Let S be the set of all points in a plan...

Let S be the set of all points in a plane and R be a relation on S defines as `R={(P,Q):` distance between `P and Q` is less than 2 units} Show that `R` is reflexive and symmetric but not transitive.

Text Solution

AI Generated Solution

To show that the relation \( R \) defined on the set \( S \) of all points in a plane, where \( R = \{(P, Q) : \text{distance between } P \text{ and } Q < 2 \text{ units}\} \), is reflexive, symmetric, but not transitive, we will go through each property step by step. ### Step 1: Proving Reflexivity **Definition of Reflexivity:** A relation \( R \) is reflexive if for every element \( P \) in set \( S \), the pair \( (P, P) \) is in \( R \). **Proof:** - Let \( P \) be any point in the plane \( S \). ...
Promotional Banner

Topper's Solved these Questions

  • PROBABILITY

    RD SHARMA ENGLISH|Exercise All Questions|449 Videos
  • SCALAR OR DOT PRODUCT

    RD SHARMA ENGLISH|Exercise All Questions|233 Videos

Similar Questions

Explore conceptually related problems

Let L be the set of all lines in a plane and R be the relation in L defined as R={(L_1,L_2):L_1 (is perpendicular to L_2 } Show that R is symmetric but neither reflexive nor transitive.

Let S be the set of all real numbers and Let R be a relations on s defined by A R B hArr |a|le b. then ,R is

Let a relation R_1 on the set R of real numbers be defined as (a ,\ b) in R_1 1+a b >0 for all a ,\ b in R . Show that R_1 is reflexive and symmetric but not transitive.

Let a relation R_1 on the set R of real numbers be defined as (a , b) in R iff 1+a b >0 for all a , b in Rdot Show that R_1 is reflexive and symmetric but not transitive.

Let N be the set of all natural numbers and let R be relation in N. Defined by R={(a,b):"a is a multiple of b"}. show that R is reflexive transitive but not symmetric .

Let A be the set of human beings living in a town at a particular time and R be the relation on A defined by R-{(x ,y) : x is exactly 7cm taller than y} Check whether the relation R is reflexive, symmetric or transitive on A.

Let T be the set of all triangles in the Euclidean plane, and let a relation R on T be defined as a\ R\ b if a is congruent to b for all a ,\ b in T . Then, R is (a) reflexive but not symmetric (b) transitive but not symmetric (c) equivalence (d) none of these

Let L denote the set of all straight lines in a plane. Let a relation R be defined by l\ R\ m iff l is perpendicular to m for all, l ,\ m in L . Then, R is (a) reflexive (b) symmetric (c) transitive (d) none of these

Check whether the relation R in R defined by R={(a ,b):alt=b^3} is reflexive, symmetric or transitive.

Check whether the relation R on R defined by R={(a ,\ b): alt=b^3} is reflexive, symmetric or transitive.

RD SHARMA ENGLISH-RELATIONS-All Questions
  1. Three relations R1, R2a n dR3 are defined on set A={a , b , c} as foll...

    Text Solution

    |

  2. Let a relation R1 on the set R of real numbers be defined as (a , b) ...

    Text Solution

    |

  3. Let S be the set of all points in a plane and R be a relation on S def...

    Text Solution

    |

  4. The following relation is defined on the set of real number: a R ...

    Text Solution

    |

  5. Prove that every identity relation on a set is reflexive, but the c...

    Text Solution

    |

  6. Let R be a relation defined on the set of natural numbers N as R={(...

    Text Solution

    |

  7. Let N denote the set of all natural numbers and R be the relation on N...

    Text Solution

    |

  8. Let N be the set of all natural numbers and let R be a relation on N×N...

    Text Solution

    |

  9. Let R be a relation on the set of all line in a plane defined by (l1, ...

    Text Solution

    |

  10. Each of the following defines a relation on N:x -> y , (i) x , y in N...

    Text Solution

    |

  11. Let A={a , b , c) and the relation R be defined on A as follows: R={(a...

    Text Solution

    |

  12. Given the relation R={(1,2),(2,3) on the set A={1,2,3}, add a minimum ...

    Text Solution

    |

  13. Let A={1,2,3,ddot,9} and R be the relation in AxA defined by (a ,b)R(c...

    Text Solution

    |

  14. Prove that the relation R on the set NxxN defined by (a ,\ b)R\ (c ,\ ...

    Text Solution

    |

  15. Let n be a positive integer. Prove that the relation R on the set Z o...

    Text Solution

    |

  16. Let "T" be the set of all triangles in a plane with "R" as relation ...

    Text Solution

    |

  17. If R and S are relations on a set A , then prove the following : (...

    Text Solution

    |

  18. Let S be a relation on the set R of all real numbers defined by S=...

    Text Solution

    |

  19. Write the domain of the relation R defined on the set Z of integers as...

    Text Solution

    |

  20. If R and S are transitive relations on a set A , then prove that...

    Text Solution

    |