Home
Class 12
MATHS
Find the non-singular matrices A, if its...

Find the non-singular matrices `A,` if its is given that `adj(A)=[[-1,-2,1],[3, 0,-3],[1,-4,1]]`

Text Solution

AI Generated Solution

Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • ALGEBRA OF MATRICES

    RD SHARMA ENGLISH|Exercise All Questions|410 Videos

Similar Questions

Explore conceptually related problems

Find the non-singular matrices A , if it is given that a d j\ (A)=[-1-2 1 3 0-3 1-4 1] .

If A and B are non - singular matrices of order three such that adj(AB)=[(1,1,1),(1,alpha, 1),(1,1,alpha)] and |B^(2)adjA|=alpha^(2)+3alpha-8 , then the value of alpha is equal to

Knowledge Check

  • If A,B,C are non - singular matrices of same order then (AB^(-1)C)^(-1)=

    A
    A) `CBA^(-1)`
    B
    B) `C^(-1)B^(-1)A^(-1)`
    C
    C) `C^(-1)BA^(-1)`
    D
    D) `C^(-1)BA`
  • Similar Questions

    Explore conceptually related problems

    For two non-singular matrices A&B, show that adj (AB)=adj(AB)=(adjB)(adjA)

    4) find the rank of [[1,-3,1,2],[0,1,2,3],[3,4,1,-2]]

    A square non-singular matrix A satisfies A^2-A+2I=0," then "A^(-1) =

    If A,B and C arae three non-singular square matrices of order 3 satisfying the equation A^(2)=A^(-1) let B=A^(8) and C=A^(2) ,find the value of det (B-C)

    Find adj for A=[[2 , 3 ] , [1 , 4]]

    If A and B are two non-singular matrices which commute, then (A(A+B)^(-1)B)^(-1)(AB)=

    If A is a 2xx2 non singular matrix, then adj(adj A) is equal to :