Home
Class 12
MATHS
Let A be a non-singular matrix. Show th...

Let `A` be a non-singular matrix. Show that `A^T A^(-1)` is symmetric if `A^2=(A^T)^2`

Text Solution

AI Generated Solution

Promotional Banner

Topper's Solved these Questions

  • ALGEBRA OF MATRICES

    RD SHARMA ENGLISH|Exercise All Questions|410 Videos

Similar Questions

Explore conceptually related problems

Let A be a non-singular matrix. Show that A^T A^(-1) is symmetric iff A^2=(A^T)^2 .

If A is a non - singular matrix then

If a non-singular matrix A is symmetric ,show that A^(-1) is also symmetric

Let A be a square matrix. Then prove that (i) A + A^T is a symmetric matrix, (ii) A -A^T is a skew-symmetric matrix and (iii) AA^T and A^TA are symmetric matrices.

Let A be a square matrix. Then prove that (i) A + A^T is a symmetric matrix, (ii) A -A^T is a skew-symmetric matrix and (iii) AA^T and A^TA are symmetric matrices.

If A is a non-singular matrix, prove that (a d j\ A)^(-1)=(a d j\ A^(-1)) .

Let a be square matrix. Then prove that A A^(T) and A^(T) A are symmetric matrices.

Column I, Column II If A is an idempotent matrix and I is an identity matrix of the same order, then the value of n , such that (A+I)^n=I+127 is, p. 9 If (I-A)^(-1)=I+A+A^2++A^2, then A^n=O , where n is, q. 10 If A is matrix such that a_(i j)-(i+j)(i-j),t h e nA is singular if order of matrix is, r. 7 If a non-singular matrix A is symmetric, show that A^(-1) . is also symmetric, then order A can be, s. 8

Let A be a non-singular square matrix of order n. Then; |adjA| =

If A is a non-singular square matrix such that |A|=10 , find |A^(-1)|

RD SHARMA ENGLISH-ADJOINTS AND INVERSE OF MATRIX-All Questions
  1. If A is a symmetric matrix, write whether A^T is symmetric or skew-sym...

    Text Solution

    |

  2. Using elementary row transformation find the inverse of the matrix A=[...

    Text Solution

    |

  3. Let A be a non-singular matrix. Show that A^T A^(-1) is symmetric if...

    Text Solution

    |

  4. If A=[[cosalpha,sinalpha],[-sinalpha,cosalpha]] is such that A^T=A^(-1...

    Text Solution

    |

  5. Find the adjoint of matrix A=[a(i j)]=[(p, q),( r, s)] .

    Text Solution

    |

  6. Find the adjoint of matrix A=[a(i j)]=|[1, 1, 1], [2, 1,-3],[-1, 2, ...

    Text Solution

    |

  7. Compute the adjoint of the matrix A given by A=[[1, 4, 5], [3, 2, 6]...

    Text Solution

    |

  8. Find the inverse of the matrix |[2,-1], [3, 4]| .

    Text Solution

    |

  9. Find the inverse of the matrix A=[[8, 4, 2],[ 2, 9, 4],[ 1, 2, 8]] .

    Text Solution

    |

  10. If A is an invertible matrix of order 3 and |A|=5 , then find |a d ...

    Text Solution

    |

  11. If A is an invertible matrix of order 3xx3 such that |A|=2 . Then, f...

    Text Solution

    |

  12. If A is an square matrix of order 3 such that |A|=2 , then write the...

    Text Solution

    |

  13. If A=|[3, 0,-1], [2, 3 ,0], [0, 4, 1]| , then find |a d j\ (a d j\ A)|...

    Text Solution

    |

  14. If A=|[a, b], [c ,d]| , find a d j\ A .

    Text Solution

    |

  15. If A=[[cosalpha,-sinalpha,0],[sinalpha,cosalpha,0],[ 0, 0, 1]] , find ...

    Text Solution

    |

  16. If A=|[2, 3], [5,-2]| , show that A^(-1)=1/(19)Adot

    Text Solution

    |

  17. Find the inverse of A=[[1, 3, 3],[ 1, 4, 3],[ 1, 3, 4]] and verify tha...

    Text Solution

    |

  18. If A=|[1,tanx],[-tanx,1]| , show that A^T\ A^(-1)=|[cos2x,-sin2x],[sin...

    Text Solution

    |

  19. If A=|[3, 2], [7, 5]| and B=|[6 ,7], [8, 9]| , verify that (A B)^(-1)=...

    Text Solution

    |

  20. Show that A=|[2,-3], [3 ,4]| satisfies the equation x^2-6x+17=0 . Henc...

    Text Solution

    |