Home
Class 12
MATHS
Let f(x)=|[cosx , x , x] , [2sinx , x ,...

Let `f(x)=|[cosx , x , x] , [2sinx , x , 2x] , [sinx , x , x]|,` then `lim_(x->0)(f(x))/(x^2)` is equal to (a)` 0 `(b) `-1` (c) 2 (d) 3

Text Solution

AI Generated Solution

Promotional Banner

Topper's Solved these Questions

  • DERIVATIVES AS A RATE MEASURER

    RD SHARMA ENGLISH|Exercise All Questions|168 Videos
  • DIFFERENTIABILITY

    RD SHARMA ENGLISH|Exercise All Questions|135 Videos

Similar Questions

Explore conceptually related problems

Let f(x)=|[cosx, x, 1], [2sinx ,x,2x],[sinx, x, x]| , then (lim)_(x->0)(f(x))/(x^2) is equal to (a) 0 (b) -1 (c) 2 (d) 3

f(x)=|[cosx,x,1],[2sinx,x^2,2x],[tanx,x,1]| . Then value of lim_(x->0)(f(x))/x is equal to

lim_(x->0)(log(1+x+x^2)+"log"(1-x+x^2))/(secx-cosx)= (a) -1 (b) 1 (c) 0 (d) 2

If f(x)=|{:(sinx,cosx,tanx),(x^(3),x^(2),x),(2x,1,x):}| , then lim_(xto0)(f(x))/(x^(2))=

lim_(xrarr0) (x^(2)-x)/(sinx)

Let f(x) =|{:(secx,x^(2),x),(2sinx,x^(3),2x^(2)),(tan3x,x^(2),x):}|lim_(x to 0)f(x)/(x^(4)) is equal to

if f(x)={{:(2+x,xge0),(2-x,xlt0):} then lim_(x to 0) f(f(x)) is equal to (A) 0 (B) 4 (C) 2 (D) does not exist

lim_(x->0^+)((sinx)/(x-sinx))^(sinx) is (a)0 (b) 1 (c) ln e (d) e^1

Let f''(x) be continuous at x = 0 and f"(0) = 4 then value of lim_(x->0)(2f(x)-3f(2x)+f(4x))/(x^2)

Evaluate lim_(x to 0) (sinx+log(1-x))/(x^(2)).

RD SHARMA ENGLISH-DETERMINANTS-All Questions
  1. The value of the determinant |[x, x+y, x+2y], [x+2y, x,x+y],[x+y, x+2y...

    Text Solution

    |

  2. The number of distinct real roots of |(cosecx,secx,secx),(secx, cosecx...

    Text Solution

    |

  3. Let f(x)=|[cosx , x , x] , [2sinx , x , 2x] , [sinx , x , x]|, then ...

    Text Solution

    |

  4. A triangle has its three sides equal to a , b and c . If the coordina...

    Text Solution

    |

  5. Solve the following system of equations using Cramers rule. 5x-7y+z=1...

    Text Solution

    |

  6. Let A=|(1,sintheta,1),(-sintheta,1,sintheta),(-1,-sintheta,1)|, where ...

    Text Solution

    |

  7. Prove the identities: |[a, b-c,c-b],[ a-c, b, c-a],[ a-b,b-a, c]| =(...

    Text Solution

    |

  8. Prove the identity: |[b^2+c^2,ab, ac],[ba,c^2+a^2,bc],[ca, cb ,a^2+b^2...

    Text Solution

    |

  9. |((a^2+b^2)/c,c,c),(a,(b^2+c^2)/a,a),(b,b,(a^2+c^2)/b)| equal to : (A)...

    Text Solution

    |

  10. Prove that identities: |[-bc,b^2+bc,c^2+bc],[a^2+ac,-ac,c^2+ac],[a^2+...

    Text Solution

    |

  11. Without expanding, prove that |a b c x y z p q r|=|x y z p q r a b c|=...

    Text Solution

    |

  12. If |[p, b, c],[ a, q, c],[ a, b, r]|=0, find the value of p/(p-a)+q/(...

    Text Solution

    |

  13. Find the equation of the line joining A(1,3)a n dB(0,0) using determin...

    Text Solution

    |

  14. If A(x1, y1),B(x2, y2) and C(x3,y3) are vertices of an equilateral ...

    Text Solution

    |

  15. If f(x)=|0x-a x-b x+a0x-c x+b x+c0|,t h e n f(x)=0 (b) f(b)=0 (c) f...

    Text Solution

    |

  16. Prove the identities: |[a^2,a^2-(b-c)^2,b c], [b^2,b^2-(c-a)^2,c a],[...

    Text Solution

    |

  17. Prove the identities: |[z, x, y],[ z^2,x^2,y^2],[z^4,x^4,y^4]|=|[x,...

    Text Solution

    |

  18. Without expanding, show that the value of each of the determinants is ...

    Text Solution

    |

  19. Without expanding, show that the value of each of the determinants is ...

    Text Solution

    |

  20. Without expanding, show that the value of each of the determinants is ...

    Text Solution

    |