Home
Class 12
MATHS
Without expanding, prove that |a b c x y...

Without expanding, prove that `|a b c x y z p q r|=|x y z p q r a b c|=|y b q x a p z c r|`

Text Solution

AI Generated Solution

To prove that the determinants \( |a \, b \, c \, x \, y \, z \, p \, q \, r| = |x \, y \, z \, p \, q \, r \, a \, b \, c| = |y \, b \, q \, x \, a \, p \, z \, c \, r| \) without expanding, we will use properties of determinants, specifically row and column transformations. ### Step-by-step Solution: 1. **Define the Determinants**: Let: \[ A = |a \, b \, c \, x \, y \, z \, p \, q \, r| ...
Promotional Banner

Topper's Solved these Questions

  • DERIVATIVES AS A RATE MEASURER

    RD SHARMA ENGLISH|Exercise All Questions|168 Videos
  • DIFFERENTIABILITY

    RD SHARMA ENGLISH|Exercise All Questions|135 Videos

Similar Questions

Explore conceptually related problems

Using the property of determinants and without expanding, prove that: |b+c q+r y+z c+a r+p z+x a+b p+q x+y|=2|a p x b q y c r z|

Prove that: |{:(a, b, c), (x, y, z), (p, q, r):}|=|{:(y, b, q), (x, a, p), (z, c, r):}|

Using the property of determinants and without expanding, prove that: |[b+c, q+r, y+z],[ c+a, r+p, z+x],[ a+b, p+q, x+y]|=2|[a, p, x],[ b, q ,y],[ c, r, z]|

Show that: |b+c c+a a+b q+r r+p p+q y+z z+x x+y|=2|a b c p q r x y z|

Using the property of determinants and without expanding, prove that: |[x, a ,x+a],[ y, b, y+b],[ z, c, z+c]|=0

Prove that |a x-b y-c z a y+b x c x+a z a y+b x b y-c z-a x b z+c y c x+a z b z+c y c z-a x-b y|=(x^2+y^2+z^2)(a^2+b^2+c^2)(a x+b y+c z)dot

Given that q^2-p r ,0,\ p >0, then the value of |p q p x+q y q r q x+r y p x+q y q x+r y0| is- a. zero b. positive c. negative \ d. q^2+p r

Prove that |[a x-b y-c z, a y+b x, c x+a z], [a y+b x, b y-c z-a x, b z+c y],[c x+a z, b z+c y, c z-a x-b y]|=(x^2+y^2+z^2)(a^2+b^2+c^2)(a x+b y+c z)dot

If p+q+r=0=a+b+c , then the value of the determinant |[p a, q b, r c],[ q c ,r a, p b],[ r b, p c, q a]|i s (a) 0 (b) p a+q b+r c (c) 1 (d) none of these

Write the coefficient of: (i) z in -7x y z (ii) p in -3p q r

RD SHARMA ENGLISH-DETERMINANTS-All Questions
  1. |((a^2+b^2)/c,c,c),(a,(b^2+c^2)/a,a),(b,b,(a^2+c^2)/b)| equal to : (A)...

    Text Solution

    |

  2. Prove that identities: |[-bc,b^2+bc,c^2+bc],[a^2+ac,-ac,c^2+ac],[a^2+...

    Text Solution

    |

  3. Without expanding, prove that |a b c x y z p q r|=|x y z p q r a b c|=...

    Text Solution

    |

  4. If |[p, b, c],[ a, q, c],[ a, b, r]|=0, find the value of p/(p-a)+q/(...

    Text Solution

    |

  5. Find the equation of the line joining A(1,3)a n dB(0,0) using determin...

    Text Solution

    |

  6. If A(x1, y1),B(x2, y2) and C(x3,y3) are vertices of an equilateral ...

    Text Solution

    |

  7. If f(x)=|0x-a x-b x+a0x-c x+b x+c0|,t h e n f(x)=0 (b) f(b)=0 (c) f...

    Text Solution

    |

  8. Prove the identities: |[a^2,a^2-(b-c)^2,b c], [b^2,b^2-(c-a)^2,c a],[...

    Text Solution

    |

  9. Prove the identities: |[z, x, y],[ z^2,x^2,y^2],[z^4,x^4,y^4]|=|[x,...

    Text Solution

    |

  10. Without expanding, show that the value of each of the determinants is ...

    Text Solution

    |

  11. Without expanding, show that the value of each of the determinants is ...

    Text Solution

    |

  12. Without expanding, show that the value of each of the determinants is ...

    Text Solution

    |

  13. Without expanding, show that the value of each of the determinants is ...

    Text Solution

    |

  14. Using the properties of determinants, prove that following |(a-b-c,2a,...

    Text Solution

    |

  15. Prove the identities: |[a, b, c],[ a-b,b-c,c-a],[ b+c,c+a, a+b]|=a^3+...

    Text Solution

    |

  16. For any triangleABC, the value of determinant |[sin^2A,cotA,1],[sin^2B...

    Text Solution

    |

  17. Without expanding, show that the value of each of the determinants is ...

    Text Solution

    |

  18. If x , y in R , then the determinant =|(cos x , -sin x,1),(sin x, cos...

    Text Solution

    |

  19. The maximum value of Delta=|(1,1,1),(1,1+sintheta,1),(1+costheta,1,1)...

    Text Solution

    |

  20. Prove that: |[-2a, a+b,a+c],[ b+a,-2b,b+c],[c+a, c+b,-2c]|=4(a+b)(b+c...

    Text Solution

    |