Home
Class 12
MATHS
Prove the identities: |[z, x, y],[ z^...

Prove the identities: `|[z, x, y],[ z^2,x^2,y^2],[z^4,x^4,y^4]|=|[x, y, z],[ x^2,y^2,z^2],[x^4,y^4,z^4]|=|[x^2,y^2,z^2],[x^4,y^4,z^4],[x, y, z]|` =x y z (x-y)(y-z)(z-x)(x+y+z)

Promotional Banner

Topper's Solved these Questions

  • DERIVATIVES AS A RATE MEASURER

    RD SHARMA ENGLISH|Exercise All Questions|168 Videos
  • DIFFERENTIABILITY

    RD SHARMA ENGLISH|Exercise All Questions|135 Videos

Similar Questions

Explore conceptually related problems

Prove: |(z, x, y),( z^2,x^2,y^2),(z^4,x^4,y^4)|=|(x, y, z),( x^2,y^2,z^2),(x^4,y^4,z^4)|=|(x^2,y^2,z^2),(x^4,y^4,z^4),(x, y, z)|=x y z(x-y)(y-z)(z-x)(x+y+z) .

Show that : |[x, y, z ],[x^2,y^2,z^2],[x^3,y^3,z^3]|=x y z(x-y)(y-z)(z-x)dot

Prove that : Det[[x,x^2,x^3],[y,y^2,y^3],[z,z^2,z^3]]=xyz(x-y)(y-z)(z-x)

show that |[y+z ,x, y],[ z+x, z, x],[x+y, y ,z]|=(x+y+z)(x-z)^2

Using properties of determinant prove that: |[1,x+y, x^2+y^2],[1, y+z, y^2+z^2],[1, z+x, z^2+x^2]|= (x-y)(y-z)(z-x)

Simplify: (x+y-2z)^2-x^2-y^2-3z^2+4x y

Prove that : |{:(x+y+2z,x,y),(z,y+z+2x,y),(z,x,x+z+2y):}|=2(x+y+z)^(3)

By using properties of determinants. Show that: |[x,x^2,y z],[ y, y^2,z x],[ z, z^2,x y]|=(x-y)(y-z)(z-x)(x y+y z+z x)

Prove: |(y+z, z, y),( z, z+x,x),( y, x,x+y)|=4\ x y z

Prove that : |{:(x-y-z ,2x, 2x),(2y,y-z-x,2y),(2z,2z,z-x-y):}|=(x+y+z)^(3)

RD SHARMA ENGLISH-DETERMINANTS-All Questions
  1. If f(x)=|0x-a x-b x+a0x-c x+b x+c0|,t h e n f(x)=0 (b) f(b)=0 (c) f...

    Text Solution

    |

  2. Prove the identities: |[a^2,a^2-(b-c)^2,b c], [b^2,b^2-(c-a)^2,c a],[...

    Text Solution

    |

  3. Prove the identities: |[z, x, y],[ z^2,x^2,y^2],[z^4,x^4,y^4]|=|[x,...

    Text Solution

    |

  4. Without expanding, show that the value of each of the determinants is ...

    Text Solution

    |

  5. Without expanding, show that the value of each of the determinants is ...

    Text Solution

    |

  6. Without expanding, show that the value of each of the determinants is ...

    Text Solution

    |

  7. Without expanding, show that the value of each of the determinants is ...

    Text Solution

    |

  8. Using the properties of determinants, prove that following |(a-b-c,2a,...

    Text Solution

    |

  9. Prove the identities: |[a, b, c],[ a-b,b-c,c-a],[ b+c,c+a, a+b]|=a^3+...

    Text Solution

    |

  10. For any triangleABC, the value of determinant |[sin^2A,cotA,1],[sin^2B...

    Text Solution

    |

  11. Without expanding, show that the value of each of the determinants is ...

    Text Solution

    |

  12. If x , y in R , then the determinant =|(cos x , -sin x,1),(sin x, cos...

    Text Solution

    |

  13. The maximum value of Delta=|(1,1,1),(1,1+sintheta,1),(1+costheta,1,1)...

    Text Solution

    |

  14. Prove that: |[-2a, a+b,a+c],[ b+a,-2b,b+c],[c+a, c+b,-2c]|=4(a+b)(b+c...

    Text Solution

    |

  15. Without expanding, show that the value of each of the determinants is ...

    Text Solution

    |

  16. If m is a positive integer and Dr=|2r-1\ ^m Cr1m^2-1 2^m m+1s in^2(...

    Text Solution

    |

  17. Without expanding, show that "Delta"=|(a-x)^2(a-y)^2(a-z)^2(b-x)^2(b-y...

    Text Solution

    |

  18. Let Deltar=|[r , x , (n(n+1))/2] , [2r-1 , y , n^2] , [3r-2 , z , (n(3...

    Text Solution

    |

  19. If Deltar=|[2^(r-1) , 2.3^(r-1) , 4. 5^(r-1)] , [x , y , z] , [2^n-1 ,...

    Text Solution

    |

  20. Find a quadratic polynomial phi(x) whose zeros are the maximum and mi...

    Text Solution

    |