Home
Class 12
MATHS
For any triangleABC, the value of determ...

For any `triangleABC`, the value of determinant `|[sin^2A,cotA,1],[sin^2B,cotB,1],[sin^2C,cotC,1]|` is:

Text Solution

AI Generated Solution

Promotional Banner

Topper's Solved these Questions

  • DERIVATIVES AS A RATE MEASURER

    RD SHARMA ENGLISH|Exercise All Questions|168 Videos
  • DIFFERENTIABILITY

    RD SHARMA ENGLISH|Exercise All Questions|135 Videos

Similar Questions

Explore conceptually related problems

For any "Delta"A B C the value of determinant |sin^2\ \ A cot A1sin^2B cot B1sin^2\ \ C cot C1| is equal to- s in A s in B s in C b. 1 c. 0 d. s in A+s in B+s in C

If A+B+C=pi , then the value of the determinant D=|sin^2AcotA1sin^2BcotB1sin^2CcotC1|i se q u a lto 1 (b) -1 (c) 0 (d) None of these

In a Delta ABC , a, b, c are sides and A, B, C are angles opposite to them, then the value of the determinant |(a^(2),b sin A,c sin A),(b sin A,1,cos A),(c sin A,cos A,1)| , is

If f(theta)=|[sin^2A,cot A,1],[sin^2B,cosB,1],[sin^2C,cosC,1]| , then (a) t a n A+t a n B+c (b) cotAcotBcotC (c) sin^2A+sin^2B+sin^2C (d) 0

If A, B, C are the angles of a triangle, then the determinant Delta = |(sin 2 A,sin C,sin B),(sin C,sin 2B,sin A),(sin B,sin A,sin 2 C)| is equal to

If the maximum and minimum values of the determinant |(1 + sin^(2)x,cos^(2) x,sin 2x),(sin^(2) x,1 + cos^(2) x,sin 2x),(sin^(2) x,cos^(2) x,1 + sin 2x)| are alpha and beta , then

If tanA=1 ,then find the value of sin^(2)A+cos^(2)A+cotA .

In a triangleABC, a^(2) sin 2C+c^(2) sin 2A=

Each question has four choices a, b, c and d, out of which only one is correct. Each question contains STATEMENT 1 and STATEMENT 2. Both the statements are TRUE and STATEMENT 2 is the correct explanation of STATEMENT1. Both the statements are TRUE but STATEMENT 2 is NOT the correct explanation of STATEMENT 1. STATEMENT 1 is TRUE and STATEMENT 2 is FALSE. STATEMENT 1 is FALSE and STATEMENT 2 is TRUE. Statement 1: if A ,B ,C are the angles of a triangles and |[1, 1, 1], [ 1+sin A ,1+sinB, 1+sin C], [ sin A+sin^2A, sin B+sin^2B,sin C+sin^2C]|=0 , then triangle may not be equilateral Statement 2: if any two rows of a determinant are the same, then the value of that determinant is zero.

In any triangle ABC, show that : 2a sin (B/2) sin (C/2)=(b+c-a) sin (A/2)

RD SHARMA ENGLISH-DETERMINANTS-All Questions
  1. Using the properties of determinants, prove that following |(a-b-c,2a,...

    Text Solution

    |

  2. Prove the identities: |[a, b, c],[ a-b,b-c,c-a],[ b+c,c+a, a+b]|=a^3+...

    Text Solution

    |

  3. For any triangleABC, the value of determinant |[sin^2A,cotA,1],[sin^2B...

    Text Solution

    |

  4. Without expanding, show that the value of each of the determinants is ...

    Text Solution

    |

  5. If x , y in R , then the determinant =|(cos x , -sin x,1),(sin x, cos...

    Text Solution

    |

  6. The maximum value of Delta=|(1,1,1),(1,1+sintheta,1),(1+costheta,1,1)...

    Text Solution

    |

  7. Prove that: |[-2a, a+b,a+c],[ b+a,-2b,b+c],[c+a, c+b,-2c]|=4(a+b)(b+c...

    Text Solution

    |

  8. Without expanding, show that the value of each of the determinants is ...

    Text Solution

    |

  9. If m is a positive integer and Dr=|2r-1\ ^m Cr1m^2-1 2^m m+1s in^2(...

    Text Solution

    |

  10. Without expanding, show that "Delta"=|(a-x)^2(a-y)^2(a-z)^2(b-x)^2(b-y...

    Text Solution

    |

  11. Let Deltar=|[r , x , (n(n+1))/2] , [2r-1 , y , n^2] , [3r-2 , z , (n(3...

    Text Solution

    |

  12. If Deltar=|[2^(r-1) , 2.3^(r-1) , 4. 5^(r-1)] , [x , y , z] , [2^n-1 ,...

    Text Solution

    |

  13. Find a quadratic polynomial phi(x) whose zeros are the maximum and mi...

    Text Solution

    |

  14. Let f(x)=|[secx,cosx,sec^2x+cotxcosecx],[cos^2x,cos^2x,cosec^2x],[1,co...

    Text Solution

    |

  15. Show that: |[a,b-c,c+b],[a+c,b,c-a],[a-b,b+a,c]|=(a+b+c)(a^2+b^2+c^2).

    Text Solution

    |

  16. If a , b , c are real numbers, prove that |[a,b,c],[b,c,a],[c,a,b]|=-(...

    Text Solution

    |

  17. Solve: |a+x a-x a-x a-x a+x a-x a-x a-x a+x|=0

    Text Solution

    |

  18. Show that: |[3a,-a+b,-a+c],[-b+a,3b,-b+c],[-c+a,-c+b,3c]|=3(a+b+c)(a b...

    Text Solution

    |

  19. If a,b,c are all distinct and |[a,a^3,a^4-1],[b,b^3,b^4-1],[c,c^3,c^4-...

    Text Solution

    |

  20. Solve : |[x-2,2x-3,3x], [-4x-4,2x-9,3x-16], [x-8,2x-27,3x-64]| = 0

    Text Solution

    |