Home
Class 12
MATHS
Without expanding, show that "Delta"=|(a...

Without expanding, show that `"Delta"=|(a-x)^2(a-y)^2(a-z)^2(b-x)^2(b-y)^2(b-z)^2(c-x)^2(c-y)^2(c-z)^2|=2(a-b)(b-c)(c-a)(x-y)(y-z)(z-x)`

Text Solution

AI Generated Solution

Promotional Banner

Topper's Solved these Questions

  • DERIVATIVES AS A RATE MEASURER

    RD SHARMA ENGLISH|Exercise All Questions|168 Videos
  • DIFFERENTIABILITY

    RD SHARMA ENGLISH|Exercise All Questions|135 Videos

Similar Questions

Explore conceptually related problems

Without expanding,FIND "Delta"=|(((a-x)^2),((a-y)^2),((a-z)^2)),(((b-x)^2),((b-y)^2),((b-z)^2)),(((c-x)^2),((c-y)^2),((c-z)^2))|

Prove that |(a-x)^2(a-y)^2(a-z)^2(b-x)^2(b-y)^2(b-z)^2(c-x)^2(c-y)^2(c-z)^2|= |(1+a x)^2(1+b x)^2(1+c x)^2(1+a y)^2(1+b y)^2(1+c y)^2(1+a z)^2(1+b z)^2(1+c z)^2|=2(b-c)(c-c)(a-b)xx(y-z)(z-x)(x-y)dot

Prove that the value of each the following determinants is zero: |[(a^x+a^(-x))^2,(a^x-a^(-x))^2 ,1],[(b^y+b^(-y))^2,(b^y-b^(-y))^2 ,1],[(c^z+c^(-z))^2,(c^z-c^(-z))^2, 1]|

Prove that |(b+x)(c+x)(v+x)(a+x)(a+x)(b+x)(b+y)(c+y)(c+x)(a+t)(a+y)(b+y)(b+z)(c+z)(c+z)(a+z)(a+z)(b+z)|=(b-c)(c-a)(y-z)(x-y)dot

If a, b,c> 0 and x,y,z in RR then the determinant |((a^x+a^-x)^2,(a^x-a^-x)^2,1),((b^y+b^-y)^2,(b^y-b^-y)^2,1),((c^z+c^-z)^2,(c^z-c^-z)^2,1)| is equal to:

If x=asecthetacosvarphi , y=bsecthetasinvarphi and z=ctantheta , then (x^2)/(a^2)+(y^2)/(b^2)= (a) (z^2)/(c^2) (b) 1-(z^2)/(c^2) (c) (z^2)/(c^2)-1 (d) 1+(z^2)/(c^2)

If x/a=y/b=z/c, then show that (x^3+a^3)/(x^2+a^2)+(y^3+b^3)/(y^2+b^2)+(z^3+c^3)/(z^2+c^2)=((x+y+z)^3+(a+b+c)^2)/((x+y+z)^2+(a+b+c)^2).

Let a ,b , c be real numbers. The following system of equations in x ,y and z (x^2)/(a^2)+(y^2)/(b^2)-(z^2)/(a^2)=1,(x^2)/(a^2)-(y^2)/(b^2)+(z^2)/(a^2)=1,-(x^2)/(a^2)+(y^2)/(b^2)+(z^2)/(a^2)=1 has a. no solution b. unique solution c. infinitely many solutions d. finitely many solutions

Factorize each of the following expressions: (a) 2p(a-b)+3q\ (5a-5b)+4r(2b-2a) (b) a b(a^2+b^2-c^2)+b c(a^2+b^2-c^2)-c a(a^2+b^2-c^2) (c) x(x^2+y^2-z^2)+y(-x^2-y^2+z^2)-z\ (x^2+y^2-z^2)

Without expanding at any stage, find the value of : |{:(,a,b,c),(,a+2x, b+2y, c+2z),(,x,y,z):}|

RD SHARMA ENGLISH-DETERMINANTS-All Questions
  1. Without expanding, show that the value of each of the determinants is ...

    Text Solution

    |

  2. If m is a positive integer and Dr=|2r-1\ ^m Cr1m^2-1 2^m m+1s in^2(...

    Text Solution

    |

  3. Without expanding, show that "Delta"=|(a-x)^2(a-y)^2(a-z)^2(b-x)^2(b-y...

    Text Solution

    |

  4. Let Deltar=|[r , x , (n(n+1))/2] , [2r-1 , y , n^2] , [3r-2 , z , (n(3...

    Text Solution

    |

  5. If Deltar=|[2^(r-1) , 2.3^(r-1) , 4. 5^(r-1)] , [x , y , z] , [2^n-1 ,...

    Text Solution

    |

  6. Find a quadratic polynomial phi(x) whose zeros are the maximum and mi...

    Text Solution

    |

  7. Let f(x)=|[secx,cosx,sec^2x+cotxcosecx],[cos^2x,cos^2x,cosec^2x],[1,co...

    Text Solution

    |

  8. Show that: |[a,b-c,c+b],[a+c,b,c-a],[a-b,b+a,c]|=(a+b+c)(a^2+b^2+c^2).

    Text Solution

    |

  9. If a , b , c are real numbers, prove that |[a,b,c],[b,c,a],[c,a,b]|=-(...

    Text Solution

    |

  10. Solve: |a+x a-x a-x a-x a+x a-x a-x a-x a+x|=0

    Text Solution

    |

  11. Show that: |[3a,-a+b,-a+c],[-b+a,3b,-b+c],[-c+a,-c+b,3c]|=3(a+b+c)(a b...

    Text Solution

    |

  12. If a,b,c are all distinct and |[a,a^3,a^4-1],[b,b^3,b^4-1],[c,c^3,c^4-...

    Text Solution

    |

  13. Solve : |[x-2,2x-3,3x], [-4x-4,2x-9,3x-16], [x-8,2x-27,3x-64]| = 0

    Text Solution

    |

  14. If x+y+z=0 , prove that |[xa, yb,zc],[yc, za, xb], [zb, xc, ya]|=x y ...

    Text Solution

    |

  15. If a , b , c are all positive and are pth ,qth and rth terms of a G.P....

    Text Solution

    |

  16. Prove that: |[bc-a^2,ca-b^2,ab-c^2],[ca-b^2,ab-c^2,bc-a^2],[ab-c^2,bc-...

    Text Solution

    |

  17. |[bc-a^2,ca-b^2,ab-c^2],[ca-b^2,ab-c^2,bc-a^2],[ab-c^2,bc-a^2,ca-b^2]|...

    Text Solution

    |

  18. Prove that: |[(b+c)^2,a^2,a^2],[b^2,(c+a)^2,b^2],[c^2,c^2,(a+b)^2]|=2a...

    Text Solution

    |

  19. Show that |[b^2+c^2,ab,ac],[ba,c^2+a^2,bc],[ca,cb,a^2+b^2]|=4a^2b^2c^2

    Text Solution

    |

  20. Prove that: |[a, b, ax+by],[ b, c, bx+cy], [ax+by, bx+cy,0]|=(b^2-a c)...

    Text Solution

    |