Home
Class 12
MATHS
Find a quadratic polynomial phi(x) whos...

Find a quadratic polynomial `phi(x)` whose zeros are the maximum and minimum values of the function: `f(x)=|[1+sin^2x,cos^2x,sin2x],[sin^2x,1+cos^2x,sin2x],[sin^2x,cos^2x,1+sin2x]|`

Text Solution

AI Generated Solution

Promotional Banner

Topper's Solved these Questions

  • DERIVATIVES AS A RATE MEASURER

    RD SHARMA ENGLISH|Exercise All Questions|168 Videos
  • DIFFERENTIABILITY

    RD SHARMA ENGLISH|Exercise All Questions|135 Videos

Similar Questions

Explore conceptually related problems

Find a quadratic polynomial varphi(x) whose zeros are the maximum and minimum values of the function f(x)=|(1+sin^2x, cos^2x,sin2x) ,(sin^2x,1+cos^2x,sin2x), (sin^2x ,cos^2x,1+sin2x)|

Find the maximum and minimum values of the function f(x) = sin x + cos 2x .

If the maximum and minimum values of the determinant |(1 + sin^(2)x,cos^(2) x,sin 2x),(sin^(2) x,1 + cos^(2) x,sin 2x),(sin^(2) x,cos^(2) x,1 + sin 2x)| are alpha and beta , then

Compute the following: [[cos^2x, sin^2x],[sin^2 x, cos^2 x]]+[[sin^2x, cos^2 x],[cos^2 x, sin^2 x]]

Find the maximum & minimum values of 27^(cos2x). 81^(sin2x)

Solve (1+sin^2x-cos^2x)/(1+sin^2x+cos^2x)

If the maximum and minimum values of the determinant |(1+sin^(2)x,cos^(2)x,sin2x),(sin^(2)x,1+cos^(2)x,sin2x),(sin^(2)x,cos^(2)x,1+sin2x)| are alpha and beta respectively, then alpha+2beta is equal to

prove that sin2x+2sin4x+sin6x=4cos^(2)x.sinx

int(2+sin2x)/(1+cos2 x)dx

The period of the function f(x)=(sin x+sin 2x+sin 4x+sin 5x)/(cos x+cos 2x+cos 4x+cos 5x) is :

RD SHARMA ENGLISH-DETERMINANTS-All Questions
  1. Let Deltar=|[r , x , (n(n+1))/2] , [2r-1 , y , n^2] , [3r-2 , z , (n(3...

    Text Solution

    |

  2. If Deltar=|[2^(r-1) , 2.3^(r-1) , 4. 5^(r-1)] , [x , y , z] , [2^n-1 ,...

    Text Solution

    |

  3. Find a quadratic polynomial phi(x) whose zeros are the maximum and mi...

    Text Solution

    |

  4. Let f(x)=|[secx,cosx,sec^2x+cotxcosecx],[cos^2x,cos^2x,cosec^2x],[1,co...

    Text Solution

    |

  5. Show that: |[a,b-c,c+b],[a+c,b,c-a],[a-b,b+a,c]|=(a+b+c)(a^2+b^2+c^2).

    Text Solution

    |

  6. If a , b , c are real numbers, prove that |[a,b,c],[b,c,a],[c,a,b]|=-(...

    Text Solution

    |

  7. Solve: |a+x a-x a-x a-x a+x a-x a-x a-x a+x|=0

    Text Solution

    |

  8. Show that: |[3a,-a+b,-a+c],[-b+a,3b,-b+c],[-c+a,-c+b,3c]|=3(a+b+c)(a b...

    Text Solution

    |

  9. If a,b,c are all distinct and |[a,a^3,a^4-1],[b,b^3,b^4-1],[c,c^3,c^4-...

    Text Solution

    |

  10. Solve : |[x-2,2x-3,3x], [-4x-4,2x-9,3x-16], [x-8,2x-27,3x-64]| = 0

    Text Solution

    |

  11. If x+y+z=0 , prove that |[xa, yb,zc],[yc, za, xb], [zb, xc, ya]|=x y ...

    Text Solution

    |

  12. If a , b , c are all positive and are pth ,qth and rth terms of a G.P....

    Text Solution

    |

  13. Prove that: |[bc-a^2,ca-b^2,ab-c^2],[ca-b^2,ab-c^2,bc-a^2],[ab-c^2,bc-...

    Text Solution

    |

  14. |[bc-a^2,ca-b^2,ab-c^2],[ca-b^2,ab-c^2,bc-a^2],[ab-c^2,bc-a^2,ca-b^2]|...

    Text Solution

    |

  15. Prove that: |[(b+c)^2,a^2,a^2],[b^2,(c+a)^2,b^2],[c^2,c^2,(a+b)^2]|=2a...

    Text Solution

    |

  16. Show that |[b^2+c^2,ab,ac],[ba,c^2+a^2,bc],[ca,cb,a^2+b^2]|=4a^2b^2c^2

    Text Solution

    |

  17. Prove that: |[a, b, ax+by],[ b, c, bx+cy], [ax+by, bx+cy,0]|=(b^2-a c)...

    Text Solution

    |

  18. Without expanding the determinant, show that (a+b+c) is a factor of th...

    Text Solution

    |

  19. If m in N and mgeq2, prove that: |1 1 1m(C1)m+1(C1)m+2(C1)m(C2)m+1(C2...

    Text Solution

    |

  20. Evaluate: =|(10 !, 11 !, 12 !), (11 !, 12 !, 13 !), (12 !, 13 !, 14 !)...

    Text Solution

    |