Home
Class 12
MATHS
If a , b , c are real numbers, prove tha...

If `a , b , c` are real numbers, prove that `|[a,b,c],[b,c,a],[c,a,b]|=-(a+b+c)(c+b w+c w^2)(a+b w^2+c w),` where `w` is a complex cube root of unity.

Text Solution

Verified by Experts

`L.H.S. = |[a,b,c],[b,c,a],[c,a,b]|`
Applying `C_1->C_1+C_2+C_3`
` = |[a+b+c,b,c],[a+b+c,c,a],[a+b+c,a,b]|`
` = (a+b+c) |[1,b,c],[1,c,a],[1,a,b]|`
Applying `R_2->R_2-R_1` and `R_3->R_3-R_1`
` = (a+b+c)|[1,b,c],[0,c-b,a-c],[0,a-b,b-c]|`
` = (a+b+c) [1((c-b)(b-c)-(a-b)(a-c))-0+0]`
` = -(a+b+c)[(b-c)^2+a^2-ab-ac+bc]`
...
Promotional Banner

Topper's Solved these Questions

  • DERIVATIVES AS A RATE MEASURER

    RD SHARMA ENGLISH|Exercise All Questions|168 Videos
  • DIFFERENTIABILITY

    RD SHARMA ENGLISH|Exercise All Questions|135 Videos

Similar Questions

Explore conceptually related problems

If a , b , c are real numbers, prove that \begin{vmatrix} a & b & c \\ b & c & a \\ c & a & b \\ \end{vmatrix}= -(a+b+c)(c+b w+c w^2)(a+ bw^2+cw), where \ \ w is a complex cube root of unity.

Using properties of determinant, If f(x)= a + bx + cx^(2) , prove that |(a,b,c),(b,c,a),(c,a,b)|= -f(1)f(omega)f(omega^(2)), omega is a cube root of unity

If f(x)=a+b x+c x^2AAa ,b ,c in R and a ,b ,c are distinct, then value of |a b c b c a c a b| is (where omega&omega^2 are complex cube roots of unity) f(1)f(omega)f(omega^2) (b) -f(omega)f(omega^2) -f(1)f(omega)f(omega^2) (d) f(omega)f(omega^2)

Prove that the lines ax+by + c = 0, bx+ cy + a = 0 and cx+ay+b=0 are concurrent if a+b+c = 0 or a+b omega + c omega^(2) + c omega = 0 where omega is a complex cube root of unity .

If a ,b ,c and u ,v ,w are the complex numbers representing the vertices of two triangles such that (c=(1-r)a+r b and w=(1-r)u+r v , where r is a complex number, then the two triangles (a)have the same area (b) are similar (c)are congruent (d) None of these

Prove that [a b c][u v w]=|[a*u, b*u, c*u], [a*v, b*v, c*v], [a*w, b*w, c*w]|

(1)/(a + omega) + (1)/(b+omega) +(1)/(c + omega) + (1)/(d + omega) =(1)/(omega) where, a,b,c,d, in R and omega is a complex cube root of unity then find the value of sum (1)/(a^(2)-a+1)

The complex number associated with the vertices A, B, C of DeltaABC are e^(i theta),omega,bar omega , respectively [ where omega,bar omega are the com plex cube roots of unity and cos theta > Re(omega) ], then the complex number of the point where angle bisector of A meets cumcircle of the triangle, is

If p=a+bomega+comega^2 , q=b+comega+aomega^2 , and r=c+aomega+bomega^2 , where a ,b ,c!=0 and omega is the complex cube root of unity, then (a) p+q+r=a+b+c (b) p^2+z^2+r^2=a^2+b^2+c^2 (c) p^2+z^2+r^2=-2(p q+q r+r p) (d) none of these

Prove that a^4+b^4+c^4> a b c(a+b+c),w h e r ea ,b ,c > 0.

RD SHARMA ENGLISH-DETERMINANTS-All Questions
  1. Let f(x)=|[secx,cosx,sec^2x+cotxcosecx],[cos^2x,cos^2x,cosec^2x],[1,co...

    Text Solution

    |

  2. Show that: |[a,b-c,c+b],[a+c,b,c-a],[a-b,b+a,c]|=(a+b+c)(a^2+b^2+c^2).

    Text Solution

    |

  3. If a , b , c are real numbers, prove that |[a,b,c],[b,c,a],[c,a,b]|=-(...

    Text Solution

    |

  4. Solve: |a+x a-x a-x a-x a+x a-x a-x a-x a+x|=0

    Text Solution

    |

  5. Show that: |[3a,-a+b,-a+c],[-b+a,3b,-b+c],[-c+a,-c+b,3c]|=3(a+b+c)(a b...

    Text Solution

    |

  6. If a,b,c are all distinct and |[a,a^3,a^4-1],[b,b^3,b^4-1],[c,c^3,c^4-...

    Text Solution

    |

  7. Solve : |[x-2,2x-3,3x], [-4x-4,2x-9,3x-16], [x-8,2x-27,3x-64]| = 0

    Text Solution

    |

  8. If x+y+z=0 , prove that |[xa, yb,zc],[yc, za, xb], [zb, xc, ya]|=x y ...

    Text Solution

    |

  9. If a , b , c are all positive and are pth ,qth and rth terms of a G.P....

    Text Solution

    |

  10. Prove that: |[bc-a^2,ca-b^2,ab-c^2],[ca-b^2,ab-c^2,bc-a^2],[ab-c^2,bc-...

    Text Solution

    |

  11. |[bc-a^2,ca-b^2,ab-c^2],[ca-b^2,ab-c^2,bc-a^2],[ab-c^2,bc-a^2,ca-b^2]|...

    Text Solution

    |

  12. Prove that: |[(b+c)^2,a^2,a^2],[b^2,(c+a)^2,b^2],[c^2,c^2,(a+b)^2]|=2a...

    Text Solution

    |

  13. Show that |[b^2+c^2,ab,ac],[ba,c^2+a^2,bc],[ca,cb,a^2+b^2]|=4a^2b^2c^2

    Text Solution

    |

  14. Prove that: |[a, b, ax+by],[ b, c, bx+cy], [ax+by, bx+cy,0]|=(b^2-a c)...

    Text Solution

    |

  15. Without expanding the determinant, show that (a+b+c) is a factor of th...

    Text Solution

    |

  16. If m in N and mgeq2, prove that: |1 1 1m(C1)m+1(C1)m+2(C1)m(C2)m+1(C2...

    Text Solution

    |

  17. Evaluate: =|(10 !, 11 !, 12 !), (11 !, 12 !, 13 !), (12 !, 13 !, 14 !)...

    Text Solution

    |

  18. Show that: |b+c c+a a+b q+r r+p p+q y+z z+x x+y|=2|a b c p q r x y z|

    Text Solution

    |

  19. Prove that |[1+a,1, 1], [1,1+b,1], [1, 1, 1+c]|=a b c(1+1/a+1/b+1/c)=a...

    Text Solution

    |

  20. If a , b , c , are roots of the equation x^3+p x+q=0, prove that |[a...

    Text Solution

    |