Home
Class 12
MATHS
Show that |[b^2+c^2,ab,ac],[ba,c^2+a^2,b...

Show that `|[b^2+c^2,ab,ac],[ba,c^2+a^2,bc],[ca,cb,a^2+b^2]|=4a^2b^2c^2`

Text Solution

AI Generated Solution

Promotional Banner

Topper's Solved these Questions

  • DERIVATIVES AS A RATE MEASURER

    RD SHARMA ENGLISH|Exercise All Questions|168 Videos
  • DIFFERENTIABILITY

    RD SHARMA ENGLISH|Exercise All Questions|135 Videos

Similar Questions

Explore conceptually related problems

Prove the identity: |[b^2+c^2,ab, ac],[ba,c^2+a^2,bc],[ca, cb ,a^2+b^2]|=4a^2b^2c^2

Prove the identities: |[b^2+c^2,ab, ac],[ba,c^2+a^2,bc],[ca, cb ,a^2+b^2]|=4a^2b^2c^2

abs([-a^2,ab,ac],[ba,-b^2,bc],[ca,cb,-c^2]) = 4a^2.b^2.c^2

Show that: |b^2+c^2a b a c b a c^2+a^2b c c a c b a^2+b^2|=4a^2b^2c^2

|[x^2+a^2,ab,ac] , [ab,x^2+b^2,bc] , [ac,bc,x^2+c^2]|=

Prove that |[a^2+1,ab,ac],[ab,b^2+1,bc],[ac,bc,c^2+1]|=1+a^2+b^2+c^2

Using properties of determinants, prove the following: |[a^2 + 1,ab, ac], [ab,b^2 + 1,b c],[ca, cb, c^2+1]|=1+a^2+b^2+c^2

Using properties of determinants, prove that |(-a^2,ab,ac),(ba,-b^2,bc),(ca,cb,-c^2)|=4a^2 b^2 c^2

Show that |[a ,b ,c],[ a^2,b^2,c^2],[bc, ca, ab]|=|[1, 1, 1],[a^2,b^2,c^2],[a^3,b^3,c^3]|=(a-b)(b-c)(c-a)(a b+b c+c a) .

Prove the identities: |{:(b^(2)+c^(2),,ab,,ac),(ab,,c^(2)+a^(2),,bc),(ca,,bc,,a^(2)+b^(2)):}|=4a^2b^2c^2

RD SHARMA ENGLISH-DETERMINANTS-All Questions
  1. |[bc-a^2,ca-b^2,ab-c^2],[ca-b^2,ab-c^2,bc-a^2],[ab-c^2,bc-a^2,ca-b^2]|...

    Text Solution

    |

  2. Prove that: |[(b+c)^2,a^2,a^2],[b^2,(c+a)^2,b^2],[c^2,c^2,(a+b)^2]|=2a...

    Text Solution

    |

  3. Show that |[b^2+c^2,ab,ac],[ba,c^2+a^2,bc],[ca,cb,a^2+b^2]|=4a^2b^2c^2

    Text Solution

    |

  4. Prove that: |[a, b, ax+by],[ b, c, bx+cy], [ax+by, bx+cy,0]|=(b^2-a c)...

    Text Solution

    |

  5. Without expanding the determinant, show that (a+b+c) is a factor of th...

    Text Solution

    |

  6. If m in N and mgeq2, prove that: |1 1 1m(C1)m+1(C1)m+2(C1)m(C2)m+1(C2...

    Text Solution

    |

  7. Evaluate: =|(10 !, 11 !, 12 !), (11 !, 12 !, 13 !), (12 !, 13 !, 14 !)...

    Text Solution

    |

  8. Show that: |b+c c+a a+b q+r r+p p+q y+z z+x x+y|=2|a b c p q r x y z|

    Text Solution

    |

  9. Prove that |[1+a,1, 1], [1,1+b,1], [1, 1, 1+c]|=a b c(1+1/a+1/b+1/c)=a...

    Text Solution

    |

  10. If a , b , c , are roots of the equation x^3+p x+q=0, prove that |[a...

    Text Solution

    |

  11. If a+b+c!=0 and |a b c b c a c a b|=0 , then prove that a=b=cdot

    Text Solution

    |

  12. Let a , band c detnote the sides BC,CA andAB respectively of triangl...

    Text Solution

    |

  13. Prove that |[a^2+2a,2a+1,1],[2a+1,a+2,1],[3,3,1]|=(a-1)^3

    Text Solution

    |

  14. Using properties of determinant show that: |[1 , a , bc] , [1 , b , ca...

    Text Solution

    |

  15. Using properties of determinants, show that triangle ABC is isosceles,...

    Text Solution

    |

  16. In a triangleABC, if |[1,1,1][1+sinA,1+sinB,1+sinC],[sinA+sin^2A, sinB...

    Text Solution

    |

  17. Show that : |[x, y, z ],[x^2,y^2,z^2],[x^3,y^3,z^3]|=x y z(x-y)(y-z)(z...

    Text Solution

    |

  18. Without expanding or evaluating show that |[0 , b-a , c-a] , [a-b , 0...

    Text Solution

    |

  19. If A is a skew-symmetric matrix of odd order n , then |A|=0

    Text Solution

    |

  20. Using properties of determinants, show that |{:(x, p, q), ( p, x, q)...

    Text Solution

    |