Home
Class 12
MATHS
Prove that: |[a, b, ax+by],[ b, c, bx+cy...

Prove that: `|[a, b, ax+by],[ b, c, bx+cy], [ax+by, bx+cy,0]|=(b^2-a c)(a x^2+2b x y+c y^2)`

Text Solution

AI Generated Solution

To prove that \[ \left| \begin{array}{ccc} a & b & ax + by \\ b & c & bx + cy \\ ax + by & bx + cy & 0 \end{array} \right| = (b^2 - ac)(ax^2 + 2bxy + cy^2), ...
Promotional Banner

Topper's Solved these Questions

  • DERIVATIVES AS A RATE MEASURER

    RD SHARMA ENGLISH|Exercise All Questions|168 Videos
  • DIFFERENTIABILITY

    RD SHARMA ENGLISH|Exercise All Questions|135 Videos

Similar Questions

Explore conceptually related problems

Prove that: |a b a x+b y b c b x+c y a x+b y b x+c y0|=(b^2-a c)(a x^2+2b x y+c y^2) .

If a >0 and discriminant of a x^2+2b x+c is negative, then |[a,b,ax+b],[b,c,bx+c],[ax+b,bx+c,0]| is a. +v e b. (a c-b)^2(a x^2+2b x+c) c. -v e d. 0

If a >0 and discriminant of a x^2+2b x+c is negative, then |[a,b,ax+b],[b,c,bx+c],[ax+b,bx+c,0]| is a. +v e b. (a c-b)^2(a x^2+2b x+c) c. -v e d. 0

If a >0 and discriminant of a x^2+2b x+c is negative, then Delta = |(a,b,ax +b),(b,c,bx +c),(ax +b,bx +c,0)| is a. +v e b. (a c-b)^2(a x^2+2b x+c) c. -v e d. 0

Prove that the lines ax+by + c = 0, bx+ cy + a = 0 and cx+ay+b=0 are concurrent if a+b+c = 0 or a+b omega + c omega^(2) + c omega = 0 where omega is a complex cube root of unity .

STATEMENT-1 : If a, b, c are distinct and x, y, z are not all zero and ax + by + cz = 0, bx + cy + az = 0, cx + ay + bz = 0 , then a + b + c = 0 and STATEMENT-2 : a^2 + b^2 + c^2 > ab + bc + ca , if a, b, c are distinct.

Let a,b,c be real numbers with a^2 + b^2 + c^2 =1 . Show that the equation |[ax-by-c,bx+ay,cx+a],[bx+ay,-ax+by-c,cy+b],[cx+a,cy+b,-ax-by+c]|=0 represents a straight line.

If the system of equations ax + by + c = 0,bx + cy +a = 0, cx + ay + b = 0 has infinitely many solutions then the system of equations (b + c) x +(c + a)y + (a + b) z = 0 (c + a) x + (a+b) y + (b + c) z = 0 (a + b) x + (b + c) y +(c + a) z = 0 has

If the lines (a-b-c) x + 2ay + 2a = 0 , 2bx + ( b- c - a) y + 2b = 0 and (2c+1) x + 2cy + c - a - b = 0 are concurrent , then the prove that either a+b+ c = 0 or (a+b+c)^(2) + 2a = 0

Let a, b and c be real numbers such that 4a + 2b + c = 0 and ab gt 0. Then the equation ax^(2) + bx + c = 0 has

RD SHARMA ENGLISH-DETERMINANTS-All Questions
  1. Prove that: |[(b+c)^2,a^2,a^2],[b^2,(c+a)^2,b^2],[c^2,c^2,(a+b)^2]|=2a...

    Text Solution

    |

  2. Show that |[b^2+c^2,ab,ac],[ba,c^2+a^2,bc],[ca,cb,a^2+b^2]|=4a^2b^2c^2

    Text Solution

    |

  3. Prove that: |[a, b, ax+by],[ b, c, bx+cy], [ax+by, bx+cy,0]|=(b^2-a c)...

    Text Solution

    |

  4. Without expanding the determinant, show that (a+b+c) is a factor of th...

    Text Solution

    |

  5. If m in N and mgeq2, prove that: |1 1 1m(C1)m+1(C1)m+2(C1)m(C2)m+1(C2...

    Text Solution

    |

  6. Evaluate: =|(10 !, 11 !, 12 !), (11 !, 12 !, 13 !), (12 !, 13 !, 14 !)...

    Text Solution

    |

  7. Show that: |b+c c+a a+b q+r r+p p+q y+z z+x x+y|=2|a b c p q r x y z|

    Text Solution

    |

  8. Prove that |[1+a,1, 1], [1,1+b,1], [1, 1, 1+c]|=a b c(1+1/a+1/b+1/c)=a...

    Text Solution

    |

  9. If a , b , c , are roots of the equation x^3+p x+q=0, prove that |[a...

    Text Solution

    |

  10. If a+b+c!=0 and |a b c b c a c a b|=0 , then prove that a=b=cdot

    Text Solution

    |

  11. Let a , band c detnote the sides BC,CA andAB respectively of triangl...

    Text Solution

    |

  12. Prove that |[a^2+2a,2a+1,1],[2a+1,a+2,1],[3,3,1]|=(a-1)^3

    Text Solution

    |

  13. Using properties of determinant show that: |[1 , a , bc] , [1 , b , ca...

    Text Solution

    |

  14. Using properties of determinants, show that triangle ABC is isosceles,...

    Text Solution

    |

  15. In a triangleABC, if |[1,1,1][1+sinA,1+sinB,1+sinC],[sinA+sin^2A, sinB...

    Text Solution

    |

  16. Show that : |[x, y, z ],[x^2,y^2,z^2],[x^3,y^3,z^3]|=x y z(x-y)(y-z)(z...

    Text Solution

    |

  17. Without expanding or evaluating show that |[0 , b-a , c-a] , [a-b , 0...

    Text Solution

    |

  18. If A is a skew-symmetric matrix of odd order n , then |A|=0

    Text Solution

    |

  19. Using properties of determinants, show that |{:(x, p, q), ( p, x, q)...

    Text Solution

    |

  20. If f(x)=|[a,-1 ,0],[ax,a,-1],[a x^2,a x, a]|, using properties of det...

    Text Solution

    |