Home
Class 12
MATHS
Without expanding the determinant, show ...

Without expanding the determinant, show that `(a+b+c)` is a factor of the determinant `|[a, b, c], [b, c, a], [c, a, b]|`

Text Solution

Verified by Experts

`|(a,b,c),(b,c,a),(c,a,b)| = /_ `
`C_1 -> C_1 + C_2 + C_3`
`|(a+b+c, b,c),(b+c+a,c,a),(c+a+b,a,b)|`
`(a+b+c)|(1,b,c),(1,c,a),(1,a,b)|= /_`
`(a+b+c)` is a factor of given determinant
Answer
Promotional Banner

Topper's Solved these Questions

  • DERIVATIVES AS A RATE MEASURER

    RD SHARMA ENGLISH|Exercise All Questions|168 Videos
  • DIFFERENTIABILITY

    RD SHARMA ENGLISH|Exercise All Questions|135 Videos

Similar Questions

Explore conceptually related problems

Without expanding the determinant, show that (a+b+c) is a factor of the determinant of . \begin{pmatrix} a & b & c \\ b & c & a \\ c & a & b \\ \end{pmatrix}

Write the value of the determinant |[a,1,b+c], [b,1,c+a] ,[c,1,a+b]| .

Without expanding, show that the value of each of the determinants is zero: |[1,a, a^2-bc],[1,b,b^2-ac],[1,c,c^2-ab]|

The value of the determinant |[a-b,b+c,a],[b-c,c+a,b],[c-a,a+b,c]| is

What is the value of the following determinant? Delta=|[4,a, b+c],[4,b, c+a],[4,c, a+b]|

Using the factor theorem it is found that a+b , b+c and c+a are three factors of the determinant |[-2a ,a+b, a+c],[ b+a,-2b,b+c],[c+a ,c+b,-2c]| . The other factor in the value of the determinant is

Let a ,b ,c be positive and not all equal. Show that the value of the determinant |[a, b, c],[b, c, a],[ c, a ,b]| is negative.

Using the factor theorem it is found that a+b , b+c and c+a are three factors of the determinant |[-2a, a+b ,a+c],[ b+a,-2b,b+c],[c+a, c+b, -2c]|dot The other factor in the value of the determinant is (a) 4 (b) 2 (c) a+b+c (d) none of these

Without expanding, show that the value of each of the determinants is zero: |1/a a^2 bc 1/b b^2 ac 1/c c^2 ab|

Without expanding show that, if s= a +b +c, then 2s is a factor of |{:( s+c, a,b),(c, s+a, b),(c,a,s+b):}|

RD SHARMA ENGLISH-DETERMINANTS-All Questions
  1. Show that |[b^2+c^2,ab,ac],[ba,c^2+a^2,bc],[ca,cb,a^2+b^2]|=4a^2b^2c^2

    Text Solution

    |

  2. Prove that: |[a, b, ax+by],[ b, c, bx+cy], [ax+by, bx+cy,0]|=(b^2-a c)...

    Text Solution

    |

  3. Without expanding the determinant, show that (a+b+c) is a factor of th...

    Text Solution

    |

  4. If m in N and mgeq2, prove that: |1 1 1m(C1)m+1(C1)m+2(C1)m(C2)m+1(C2...

    Text Solution

    |

  5. Evaluate: =|(10 !, 11 !, 12 !), (11 !, 12 !, 13 !), (12 !, 13 !, 14 !)...

    Text Solution

    |

  6. Show that: |b+c c+a a+b q+r r+p p+q y+z z+x x+y|=2|a b c p q r x y z|

    Text Solution

    |

  7. Prove that |[1+a,1, 1], [1,1+b,1], [1, 1, 1+c]|=a b c(1+1/a+1/b+1/c)=a...

    Text Solution

    |

  8. If a , b , c , are roots of the equation x^3+p x+q=0, prove that |[a...

    Text Solution

    |

  9. If a+b+c!=0 and |a b c b c a c a b|=0 , then prove that a=b=cdot

    Text Solution

    |

  10. Let a , band c detnote the sides BC,CA andAB respectively of triangl...

    Text Solution

    |

  11. Prove that |[a^2+2a,2a+1,1],[2a+1,a+2,1],[3,3,1]|=(a-1)^3

    Text Solution

    |

  12. Using properties of determinant show that: |[1 , a , bc] , [1 , b , ca...

    Text Solution

    |

  13. Using properties of determinants, show that triangle ABC is isosceles,...

    Text Solution

    |

  14. In a triangleABC, if |[1,1,1][1+sinA,1+sinB,1+sinC],[sinA+sin^2A, sinB...

    Text Solution

    |

  15. Show that : |[x, y, z ],[x^2,y^2,z^2],[x^3,y^3,z^3]|=x y z(x-y)(y-z)(z...

    Text Solution

    |

  16. Without expanding or evaluating show that |[0 , b-a , c-a] , [a-b , 0...

    Text Solution

    |

  17. If A is a skew-symmetric matrix of odd order n , then |A|=0

    Text Solution

    |

  18. Using properties of determinants, show that |{:(x, p, q), ( p, x, q)...

    Text Solution

    |

  19. If f(x)=|[a,-1 ,0],[ax,a,-1],[a x^2,a x, a]|, using properties of det...

    Text Solution

    |

  20. If a , b , c are distinct real numbers and the system of equations a x...

    Text Solution

    |