Home
Class 12
MATHS
If m in N and mgeq2, prove that: |1 1 1...

If `m in N` and `mgeq2,` prove that: `|1 1 1m_(C_1)m+1_(C_1)m+2_(C_1)m_(C_2)m+1_(C_2)m+2_(C_2)|=1`

Text Solution

AI Generated Solution

Promotional Banner

Topper's Solved these Questions

  • DERIVATIVES AS A RATE MEASURER

    RD SHARMA ENGLISH|Exercise All Questions|168 Videos
  • DIFFERENTIABILITY

    RD SHARMA ENGLISH|Exercise All Questions|135 Videos

Similar Questions

Explore conceptually related problems

If m in N and mgeq2 prove that: |1 1 1\ ^m C_1\ ^(m+1)C_1\ ^(m+2)C_1\ ^m C_2\ ^(m+1)C_2\ ^(m+2)C_2|=1 .

Prove that ^m C_1^n C_m-^m C_2^(2n)C_m+^m C_3^(3n)C_m-=(-1)^(m-1)n^mdot

The value of the determinant |(1,1,1),(.^(m)C_(1),.^(m +1)C_(1),.^(m+2)C_(1)),(.^(m)C_(2),.^(m +1)C_(2),.^(m+2)C_(2))| is equal to

Prove that sum_(r=1)^(m-1)(2r^2-r(m-2)+1)/((m-r)^m C_r)=m-1/mdot

Using binomial theorem (without using the formula for .^n C_r ) , prove that .^nC_4+^m C_2-^m C_1.^n C_2 = .^m C_4-^(m+n)C_1.^m C_3+^(m+n)C_2.^m C_2-^(m+n)C_3^m.C_1 +^(m+n)C_4dot

If the lines whose equations are y=m_1 x+ c_1 , y = m_2 x + c_2 and y=m_3 x + c_3 meet in a point, then prove that : m_1 (c_2 - c_3) + m_2 (c_3 - c_1) + m_3 (c_1 - c_2) =0

(i) Find the value of 'a' if the lines 3x-2y+8=0 , 2x+y+3=0 and ax+3y+11=0 are concurrent. (ii) If the lines y=m_(1)x+c_(1) , y=m_(2)x+c_(2) and y=m_(3)x+c_(3) meet at point then shown that : c_(1)(m_(2)-m_(3))+c_(2)(m_(3)-m_(1))+c_(3)(m_(1)-m_(2))=0

If (l_(1), m_(1), n_(1)) , (l_(2), m_(2), n_(2)) are D.C's of two lines, then (l_(1)m_(2)-l_(2)m_(1))^2+(m_(1)n_(2)-n_(1)m_(2))^2+(n_(1)l_(2)-n_(2)l_(1))^2+(l_(1)l_(2)+m_(1)m_(2)+n_(1)n_(2))^2=

If n=12 m(m in N), prove that ^n C_0-(^n C_2)/((2+sqrt(3))^2)+(^n C_4)/((2+sqrt(3))^4)-(^n C_6)/((2+sqrt(3))^6)+= (-1)^m((2sqrt(2))/(1+sqrt(3)))^ndot

If a >0,b >0 and c >0 prove that (1984, 2M) (a+b+c)(1/a+1/b+1/c)geq9

RD SHARMA ENGLISH-DETERMINANTS-All Questions
  1. Prove that: |[a, b, ax+by],[ b, c, bx+cy], [ax+by, bx+cy,0]|=(b^2-a c)...

    Text Solution

    |

  2. Without expanding the determinant, show that (a+b+c) is a factor of th...

    Text Solution

    |

  3. If m in N and mgeq2, prove that: |1 1 1m(C1)m+1(C1)m+2(C1)m(C2)m+1(C2...

    Text Solution

    |

  4. Evaluate: =|(10 !, 11 !, 12 !), (11 !, 12 !, 13 !), (12 !, 13 !, 14 !)...

    Text Solution

    |

  5. Show that: |b+c c+a a+b q+r r+p p+q y+z z+x x+y|=2|a b c p q r x y z|

    Text Solution

    |

  6. Prove that |[1+a,1, 1], [1,1+b,1], [1, 1, 1+c]|=a b c(1+1/a+1/b+1/c)=a...

    Text Solution

    |

  7. If a , b , c , are roots of the equation x^3+p x+q=0, prove that |[a...

    Text Solution

    |

  8. If a+b+c!=0 and |a b c b c a c a b|=0 , then prove that a=b=cdot

    Text Solution

    |

  9. Let a , band c detnote the sides BC,CA andAB respectively of triangl...

    Text Solution

    |

  10. Prove that |[a^2+2a,2a+1,1],[2a+1,a+2,1],[3,3,1]|=(a-1)^3

    Text Solution

    |

  11. Using properties of determinant show that: |[1 , a , bc] , [1 , b , ca...

    Text Solution

    |

  12. Using properties of determinants, show that triangle ABC is isosceles,...

    Text Solution

    |

  13. In a triangleABC, if |[1,1,1][1+sinA,1+sinB,1+sinC],[sinA+sin^2A, sinB...

    Text Solution

    |

  14. Show that : |[x, y, z ],[x^2,y^2,z^2],[x^3,y^3,z^3]|=x y z(x-y)(y-z)(z...

    Text Solution

    |

  15. Without expanding or evaluating show that |[0 , b-a , c-a] , [a-b , 0...

    Text Solution

    |

  16. If A is a skew-symmetric matrix of odd order n , then |A|=0

    Text Solution

    |

  17. Using properties of determinants, show that |{:(x, p, q), ( p, x, q)...

    Text Solution

    |

  18. If f(x)=|[a,-1 ,0],[ax,a,-1],[a x^2,a x, a]|, using properties of det...

    Text Solution

    |

  19. If a , b , c are distinct real numbers and the system of equations a x...

    Text Solution

    |

  20. If x , y , z are not all zero such that a x+y+z=0, x+b y+z=0, ...

    Text Solution

    |