Home
Class 12
MATHS
Show that : |[x, y, z ],[x^2,y^2,z^2],[x...

Show that : `|[x, y, z ],[x^2,y^2,z^2],[x^3,y^3,z^3]|=x y z(x-y)(y-z)(z-x)dot`

Text Solution

Verified by Experts

`|(x,y,z),(x^2,y^2,z^2),(x^3 , y^3,z^3)|`
`= xyz|(1,1,1),(x,y,z),(x^2,y^2,z^2)|`
`c_2 -> c_2 - c_1`
`c_3 -> c_3 - c_1`
`=> |(1,0,0),(x, y-x, z-x),(x^2, y^2-x^2, z^2-x^2)|`
`= 1((y-x)(z^2-x^2) - (z-x)(y^2 - x^2))`
`= xyz(y-x)(z-x)(z+x-y-x)`
`= xyz(y-x)(z-x)(z-y)`= RHS
...
Promotional Banner

Topper's Solved these Questions

  • DERIVATIVES AS A RATE MEASURER

    RD SHARMA ENGLISH|Exercise All Questions|168 Videos
  • DIFFERENTIABILITY

    RD SHARMA ENGLISH|Exercise All Questions|135 Videos

Similar Questions

Explore conceptually related problems

Prove that : Det[[x,x^2,x^3],[y,y^2,y^3],[z,z^2,z^3]]=xyz(x-y)(y-z)(z-x)

Prove the identities: |[z, x, y],[ z^2,x^2,y^2],[z^4,x^4,y^4]|=|[x, y, z],[ x^2,y^2,z^2],[x^4,y^4,z^4]|=|[x^2,y^2,z^2],[x^4,y^4,z^4],[x, y, z]| =x y z (x-y)(y-z)(z-x)(x+y+z)

By using properties of determinants. Show that: |[x,x^2,y z],[ y, y^2,z x],[ z, z^2,x y]|=(x-y)(y-z)(z-x)(x y+y z+z x)

show that |[y+z ,x, y],[ z+x, z, x],[x+y, y ,z]|=(x+y+z)(x-z)^2

Prove: |(z, x, y),( z^2,x^2,y^2),(z^4,x^4,y^4)|=|(x, y, z),( x^2,y^2,z^2),(x^4,y^4,z^4)|=|(x^2,y^2,z^2),(x^4,y^4,z^4),(x, y, z)|=x y z(x-y)(y-z)(z-x)(x+y+z) .

Prove that : |{:(1,1,1),(x,y,z),(x^(3),y^(3),z^(3)):}|=(x-y)(y-z)(z-x)(x+y+z)

Using properties of determinants, prove that |{:(x,y,z),(x^(2),y^(2),z^(2)),(y+z,z+x,x+y):}|=(x-y)(y-z)(z-x)(x+y+z)

Prove that : =|{:(1,1,1),(x,y,z),(x^(2),y^(2),z^(2)):}|=(x-y)(y-z)(z-x)

For any scalar p prove that =|[x,x^2, 1+p x^3],[y, y^2, 1+p y^3],[z, z^2 ,1+p z^3]|=(1+p x y z)(x-y)(y-z)(z-x) .

If a x_1^2+b y_1^2+c z_1^2=a x_2 ^2+b y_2 ^2+c z_2 ^2=a x_3 ^2+b y_3 ^2+c z_3 ^2=d ,a x_2 x_3+b y_2y_3+c z_2z_3=a x_3x_1+b y_3y_1+c z_3z_1=a x_1x_2+b y_1y_2+c z_1z_2=f, then prove that |(x_1, y_1, z_1), (x_2, y_2, z_2), (x_3,y_3,z_3)|=(d-f){((d+2f))/(a b c)}^(1//2)

RD SHARMA ENGLISH-DETERMINANTS-All Questions
  1. Using properties of determinants, show that triangle ABC is isosceles,...

    Text Solution

    |

  2. In a triangleABC, if |[1,1,1][1+sinA,1+sinB,1+sinC],[sinA+sin^2A, sinB...

    Text Solution

    |

  3. Show that : |[x, y, z ],[x^2,y^2,z^2],[x^3,y^3,z^3]|=x y z(x-y)(y-z)(z...

    Text Solution

    |

  4. Without expanding or evaluating show that |[0 , b-a , c-a] , [a-b , 0...

    Text Solution

    |

  5. If A is a skew-symmetric matrix of odd order n , then |A|=0

    Text Solution

    |

  6. Using properties of determinants, show that |{:(x, p, q), ( p, x, q)...

    Text Solution

    |

  7. If f(x)=|[a,-1 ,0],[ax,a,-1],[a x^2,a x, a]|, using properties of det...

    Text Solution

    |

  8. If a , b , c are distinct real numbers and the system of equations a x...

    Text Solution

    |

  9. If x , y , z are not all zero such that a x+y+z=0, x+b y+z=0, ...

    Text Solution

    |

  10. Find the value of lambda for which the homogeneous system of equations...

    Text Solution

    |

  11. If the system of equations x=c y+b z y=a z+c x z=b x+a y has...

    Text Solution

    |

  12. A matrix A of order 3x3 has determinant 5. What is the value of |3A|?

    Text Solution

    |

  13. If A is a square matrix such that |A|=2 , write the value of |AA^T|

    Text Solution

    |

  14. Find the real values of lambda for which the following system of linea...

    Text Solution

    |

  15. If a , b , c are non-zero real numbers and if the system of equations...

    Text Solution

    |

  16. Which of the following is not correct in a given determinant of A , wh...

    Text Solution

    |

  17. Let |x2xx^2x6xx6|=a x^4+b x^3+c x^2+dx+edot Then, the value of 5a+4b+3...

    Text Solution

    |

  18. Let delta=|A x x^2 1 B y y^2 1 C z z^2 1|a n d1=|A B C x y z y z z xx ...

    Text Solution

    |

  19. If Delta1=|[a, b, c],[ x, y, z],[ p, q, r]| and Delta2=|[q,-b, y],[-p,...

    Text Solution

    |

  20. Without expanding show that: =|(cose c^2theta,cot^2theta,1),(cot^2thet...

    Text Solution

    |