Home
Class 12
MATHS
The value of the determinant |a^2a1cosn ...

The value of the determinant `|a^2a1cosn xcos(n+1)xcos(n+2)xsinn xsin(n+1)xsin(n+2)x|` is independent of n (b) a (c) x (d) none of these

Text Solution

AI Generated Solution

Promotional Banner

Topper's Solved these Questions

  • DERIVATIVES AS A RATE MEASURER

    RD SHARMA ENGLISH|Exercise All Questions|168 Videos
  • DIFFERENTIABILITY

    RD SHARMA ENGLISH|Exercise All Questions|135 Videos

Similar Questions

Explore conceptually related problems

The value of the determinant |a^2a1cosn xcos(n+a)xcos(n+2)xsinn xsin(n+1)xsin(n+2)x| is independent of n (b) a (c) x (d) none of these

The determinant Delta=|(a^2,a,1),(cos(nx),cos (n + 1) x,cos(n+2) x),(sin(nx),sin (n +1)x,sin (n + 2) x)| is independent of

sin(n+1)xsin(n+2)x+cos(n+1)xcos(n+2)x=cosx

tan^(-1)n ,tan^(-1)(n+1) and tan^(-1)(n+2),n in N , are the angles of a triangle if n= 1 (b) 2 (c) 3 (d) None of these

If f(x+1)+f(x-1)=2f(x)a n df(0),=0, then f(n),n in N , is nf(1) (b) {f(1)}^n (c) 0 (d) none of these

The general solution of cosxcos6x=-1 is (a) x=(2n+1)pi,n in Z (b) x=2npi,n in Z (c) x=npi,n in Z (d) none of these

Evaluate int_(0)^(2pi)(xcos^(2n)x)/(cos^(2n)x+sin^(2n)x)dx

If cos^3xsin2x=sum_(r=0)^n a_xsin(r x),AAx in R then

The number of terms in the expansion of (x+1/x+1)^n is (A) 2n (B) 2n+1 (C) 2n-1 (D) none of these

The value of lim_(n->oo)[(2n)/(2n^2-1)cos(n+1)/(2n-1)-n/(1-2n)dot(n(-1)^n)/(n^2+1)]i s 1 (b) -1 (c) 0 (d) none of these

RD SHARMA ENGLISH-DETERMINANTS-All Questions
  1. If Dk=|[1,n,n],[2k,n^2+n+2,n^2+n],[2k-1,n^2,n^2+n+2]| and sum(k=1)^...

    Text Solution

    |

  2. If Delta1=|(1, 1 ,1),(a, b, c ),(a^2,b^2,c^2)|,Delta2=|(1,b c, a),(1,c...

    Text Solution

    |

  3. The value of the determinant |a^2a1cosn xcos(n+1)xcos(n+2)xsinn xsin(n...

    Text Solution

    |

  4. Evaluate: (i) |(5 ,4),(-2, 3)| (ii) |(sintheta,costheta),(-costheta,si...

    Text Solution

    |

  5. Evaluate: (i) |(x^2+x y+y^2,x+y ),(x^2-x y+y^2,x-y)|

    Text Solution

    |

  6. Evaluate D =|[2, 3,-2],[ 1, 2, 3],[-2, 1,-3]| by expanding it along th...

    Text Solution

    |

  7. Evaluate the determinant D=|[2 ,3,-2],[ 1, 2 ,3],[-2, 1,-3]| by expa...

    Text Solution

    |

  8. Evaluate D =|[2, 3,-2],[ 1, 2, 3],[-2, 1,-3]|

    Text Solution

    |

  9. Evaluate =|[-1, 6,-2],[ 2, 1, 1],[ 4, 1,-3]| by method.

    Text Solution

    |

  10. For what value of x the matrix A=[[1,-2,3],[1,2,1],[x,2,-3]] is singul...

    Text Solution

    |

  11. Determine the values of x for which the matrix A=[x+1-3 4-5x+2 2 4 ...

    Text Solution

    |

  12. If A=[1 3 2 1] , find the determinant of the matrix A^2-2A .

    Text Solution

    |

  13. If A=[1 2 4 2] , then show that |2A|=4|A| .

    Text Solution

    |

  14. If |[x-2 ,-3], [3x, 2x]|=3 , find the values of x

    Text Solution

    |

  15. Let |[3,y],[x,1]|=|[3,2],[4,1]| Find possible values of x and y if x,y...

    Text Solution

    |

  16. Evaluate the determinant =|((log)3 512,(log)4 3),((log)3 8,(log)4 9)...

    Text Solution

    |

  17. Find the minors of cofactors of elements of the matrix A=[a(i j)]=[[1,...

    Text Solution

    |

  18. Let A=|[1,sintheta,1],[-sintheta,1,sintheta],[-1,-sintheta,1]|, where ...

    Text Solution

    |

  19. If [ ] denotes the greatest integer less than or equal to the real nu...

    Text Solution

    |

  20. Prove that the determinant |(x,sin theta,cos theta),(-sin theta,-x,1),...

    Text Solution

    |