Home
Class 12
MATHS
Using Lagranges mean value theorem, show...

Using Lagranges mean value theorem, show that sinx < x for x > 0.

Answer

Step by step text solution for Using Lagranges mean value theorem, show that sinx < x for x > 0. by MATHS experts to help you in doubts & scoring excellent marks in Class 12 exams.

Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • MEAN AND VARIANCE OF A RANDOM VARIABLE

    RD SHARMA ENGLISH|Exercise All Questions|125 Videos
  • PROBABILITY

    RD SHARMA ENGLISH|Exercise All Questions|449 Videos

Similar Questions

Explore conceptually related problems

Using lagrange's mean value theorem, show that (beta-alpha)/(1+beta^2) alpha > 0.

Using Lagranges mean value theorem, prove that |cosa-cosb|<=|a-b|dot

Knowledge Check

  • The value of c in Lagrange.s mean value theorem for the function f (x) = x ^(2) + x +1 , x in [0,4] is :

    A
    3
    B
    2
    C
    1
    D
    `3/2`
  • Similar Questions

    Explore conceptually related problems

    Using Lagranges mean value theorem, prove that |cosa-cosb|<|a-b|dot

    Using Lagranges mean value theorem, prove that (b-a)sec^2a lt (tanb-tana) lt (b-a)sec^2b , where 0ltaltbltpi/2

    Using Lagranges mean value theorem, prove that (b-a)/bltlog(b/a)lt(b-a)/a, where 0ltaltbdot

    Using Lagranges mean value theorem, prove that (b-a)/bltlog(b/a)lt(b-a)/a ,where 0ltaltb

    Using Lagranges mean value theorem, prove that (b-a)/b < log(b/a) < (b-a)/a ,w h e r e 0 < a < bdot

    Using Lagranges mean value theorem, find a point on the curve y=sqrt(x-2) defined on the interval [2,3], where the tangent is parallel to the chord joining the end points of the curve.

    The value of c in Lagrange's mean value theorem for the function f(x) = |x| in the interval [-1, 1] is