Home
Class 11
MATHS
Solve: sin3alpha=4sinalphasin(x+alpha)si...

Solve: `sin3alpha=4sinalphasin(x+alpha)sin(x-alpha),w h e r ealpha!=npi,n in Z`

Text Solution

AI Generated Solution

Promotional Banner

Topper's Solved these Questions

  • TRANSFORMATION FORMULAE

    RD SHARMA ENGLISH|Exercise All Questions|145 Videos
  • TRIGONOMETRIC FUNCTIONS

    RD SHARMA ENGLISH|Exercise All Questions|166 Videos

Similar Questions

Explore conceptually related problems

If sin 3 alpha =4 sin alpha sin (x+alpha ) sin(x-alpha ) , then

int[sinalphasin(x-alpha)+sin^2(x/2-alpha)]dx

Solve: sin3alpha=4sinalpha. Sin(theta+alpha).sin(theta-alpha) where alpha ne n pi, n in I

The set of values of x satisfying the equation sin3alpha=4sinalphasin(x+alpha)sin(x-alpha) is (a) npi+-pi/4,AAn in Z (b) npi+-pi/3,AAn in Z (c) npi+-pi/9,AAn in Z (d) npi+-pi/(12),AAn in Z

int sqrt(sin(x-alpha)/sin(x+alpha)) dx

If sin(x +3alpha)=3 sin (alpha-x) , then

int(sin2x)/(sin(x-alpha)sin(x+alpha)) dx

The value of the expression (sin7alpha+6sin 5 alpha+17sin3alpha+12sin alpha)/(sin6alpha+5sin 4alpha+12 sin 2 alpha) , where alpha=(pi)/(5) is equal to :

Prove that sinalpha*sin(60-alpha)sin(60+alpha) = 1/4*sin3alpha

Evaluate: int(sin(x-alpha))/(sin(x+alpha))\ dx