Home
Class 11
MATHS
If xcostheta=ycos(theta+(2pi)/3)=z cos(t...

If `xcostheta=ycos(theta+(2pi)/3)=z cos(theta+(4pi)/3)` , prove that `x y+y z+z x=0.`

Text Solution

AI Generated Solution

To prove that \( xy + yz + zx = 0 \) given the equations \( x \cos \theta = y \cos \left( \theta + \frac{2\pi}{3} \right) = z \cos \left( \theta + \frac{4\pi}{3} \right) \), we can follow these steps: ### Step 1: Set a common variable Let \( k = x \cos \theta = y \cos \left( \theta + \frac{2\pi}{3} \right) = z \cos \left( \theta + \frac{4\pi}{3} \right) \). ### Step 2: Express \( x, y, z \) in terms of \( k \) From the above, we can express \( x, y, z \) as: \[ ...
Promotional Banner

Topper's Solved these Questions

  • THE STRAIGHT LINES

    RD SHARMA ENGLISH|Exercise All Questions|493 Videos
  • TRIGONOMETRIC EQUATIONS

    RD SHARMA ENGLISH|Exercise All Questions|120 Videos

Similar Questions

Explore conceptually related problems

If x\ costheta=y cos(theta+(2pi)/3)=z cos(theta+(4pi)/3) , then write the value of 1/x+1/y+1/zdot

If x/(costheta)=y/(cos(theta-(2pi)/3))=z/(cos(theta+(2pi)/3)) then x+y+z is (a)1 (b) 0 (c) -1 (d) none of these

Prove that: cos^3theta+cos^3 (theta- (2pi)/n)+cos^3 (theta- (4pi)/n)+… to n terms =0

If x=sin(theta+(7pi)/(12))+sin(theta+pi/(12))+sin(theta+(3pi)/(12))dot Y=cos(theta+(7pi)/(12))+cos(theta+pi/(12))+cos(theta+(3pi)/(12))dot then prove that X/Y-Y/X=2tan2theta

If xsin^3theta+ycos^3theta=sinthetacosthetaa n dxsintheta=ycostheta, prove that x^2+y^2=1

The system of equations x - y cos theta + z cos 2theta =0 -xcostheta+y-zcostheta=0 x cos 2theta-ycostheta + z=0 has non-trivial solution for theta equals

If 0lt=thetalt=pi and the system of equations x=(sin theta)y+(cos theta)z y=z+(cos theta) x z=(sin theta) x+y has a non-trivial solution then (8theta)/(pi) is equal to

If cos^(-1) x + cos^(-1) y + cos^(-1) z = pi , prove that x^(2) + y^(2) + z^(2) + 2xyz = 1

If cos(y-z)+cos(z-x)+cos(x-y)=-3/2, prove that cos x + cos y + cos z = 0 = sin x + siny + sinz.

If pi < theta < 2pi and z=1+cos theta + i sin theta , then write the value of |z|

RD SHARMA ENGLISH-TRANSFORMATION FORMULAE-All Questions
  1. If sin(B+C-A),sin(C+A-B),sin(A+B-C), are AdotPdot,t h e ncot A ,cot B ...

    Text Solution

    |

  2. If cos(alpha+beta)*sin(gamma+delta)=cos(alpha-beta)*sin(gamma-delta), ...

    Text Solution

    |

  3. If xcostheta=ycos(theta+(2pi)/3)=z cos(theta+(4pi)/3) , prove that x y...

    Text Solution

    |

  4. If cos e cA+secA=cos e c B+s e cB , prove that: "tanAtanB"=cot(A+B)/2

    Text Solution

    |

  5. If ("tan"(theta+alpha))/a=""("tan"(theta+beta))/b=""("tan"(theta+gamma...

    Text Solution

    |

  6. If cos A+cosB=1/2 and sin A+ sinB=1/4 , prove that: tan((A+B)/2)=1/2

    Text Solution

    |

  7. If asintheta="bsin"(theta+(2pi)/3)="csin"(theta+(4pi)/3) , prove that ...

    Text Solution

    |

  8. If sin(y+z-x),sin(z+x-y),"sin"(x+y-z) are in A.P., then t a n x ,tany ...

    Text Solution

    |

  9. Prove that: tan20^0tan40^0tan80^0=tan60^0

    Text Solution

    |

  10. Prove that :"sin"Asin(60^0-A)sin(60^0+A)=1/4sin3A

    Text Solution

    |

  11. Show that: t a n(60^0+theta)t a n(60^0-theta)=(2cos2theta+1)/(2cos2the...

    Text Solution

    |

  12. If alpha+beta=90^0 , find the maximum and minimum values of sinalphas...

    Text Solution

    |

  13. Prove that: cos20^0cos40^0cos60^0cos80^0=1/(16)

    Text Solution

    |

  14. Prove that: sin20^0sin40^0sin60^0sin80^0=3/(16)

    Text Solution

    |

  15. Prove that: 4"cos"12^0cos48^0cos72^0=cos36^0

    Text Solution

    |

  16. Prove that: tantheta.tan(60^0-theta).tan(60^0+theta)=tan3thetadot.'

    Text Solution

    |

  17. Prove that: sin(B-C)cos(A-D) + sin(C-A) cos (B-D) + sin(A-B) cos(C-...

    Text Solution

    |

  18. If sinx+siny=sqrt(3)(cos y-cos x), then sin3x+sin3y= (a) ...

    Text Solution

    |

  19. Prove that: (cos(A+B+C)+cos(-A+B+C)+cos(A-B+C)+"cos"(A+B-C))/(sin(A+B...

    Text Solution

    |

  20. Prove that: ((cosA+cos B)/(sinA-sinB))^n+((sinA+sinB)/(cosA-cosB))^n={...

    Text Solution

    |