Home
Class 11
MATHS
If sin(y+z-x),sin(z+x-y),"sin"(x+y-z) ar...

If `sin(y+z-x),sin(z+x-y),"sin"(x+y-z)` are in A.P., then `t a n x ,tany ,tanz` are in
(a)A.P.
(b) G.P.
(c) H.P.
(d) none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to determine the relationship between \( \tan x \), \( \tan y \), and \( \tan z \) given that \( \sin(y + z - x) \), \( \sin(z + x - y) \), and \( \sin(x + y - z) \) are in arithmetic progression (A.P.). ### Step-by-Step Solution: 1. **Understanding the Condition of A.P.**: Since \( \sin(y + z - x) \), \( \sin(z + x - y) \), and \( \sin(x + y - z) \) are in A.P., we can express this condition mathematically: \[ 2 \sin(z + x - y) = \sin(y + z - x) + \sin(x + y - z) \] 2. **Using the Sine Difference Formula**: We can apply the sine difference formula: \[ \sin A - \sin B = 2 \cos\left(\frac{A + B}{2}\right) \sin\left(\frac{A - B}{2}\right) \] Let \( A = y + z - x \) and \( B = x + y - z \). Then we can rewrite our equation: \[ 2 \sin(z + x - y) = 2 \cos\left(\frac{(y + z - x) + (x + y - z)}{2}\right) \sin\left(\frac{(y + z - x) - (x + y - z)}{2}\right) \] 3. **Simplifying the Angles**: Calculate \( A + B \) and \( A - B \): - \( A + B = (y + z - x) + (x + y - z) = 2y \) - \( A - B = (y + z - x) - (x + y - z) = 2z - 2x \) Substituting these into the equation gives: \[ 2 \sin(z + x - y) = 2 \cos(y) \sin(z - x) \] 4. **Dividing by 2**: Simplifying further, we have: \[ \sin(z + x - y) = \cos(y) \sin(z - x) \] 5. **Using the Sine and Cosine Relationships**: Now, we can express the sine and cosine in terms of tangent: \[ \tan(z + x - y) = \frac{\sin(z + x - y)}{\cos(z + x - y)} \] and similarly for the other terms. 6. **Finding the Relationship**: From the above equations, we can derive: \[ \tan x + \tan z = 2 \tan y \] This indicates that \( \tan x \), \( \tan y \), and \( \tan z \) are in A.P. ### Conclusion: Thus, we conclude that \( \tan x \), \( \tan y \), and \( \tan z \) are in arithmetic progression (A.P.). ### Answer: (a) A.P.
Promotional Banner

Topper's Solved these Questions

  • THE STRAIGHT LINES

    RD SHARMA ENGLISH|Exercise All Questions|493 Videos
  • TRIGONOMETRIC EQUATIONS

    RD SHARMA ENGLISH|Exercise All Questions|120 Videos

Similar Questions

Explore conceptually related problems

If a ,b ,c are in A.P., the a/(b c),1/c ,1/b will be in a. A.P b. G.P. c. H.P. d. none of these

If the lines a x+2y+1=0,b x+3y+1=0a n dc x+4y+1=0 are concurrent, then a ,b ,c are in (a). A.P. (b). G.P. (c). H.P. (d). none of these

If a ,b ,c are in G.P. and a^(1//x)=b^(1//y)=c^(1//z), then x y z are in AP (b) GP (c) HP (d) none of these

If 2 (y - a) is the H.M. between y - x and y - z then x-a, y-a, z-a are in (i) A.P (ii) G.P (iii) H.P (iv) none of these

If (a-x)/(p x)=(a-y)/(q y)=(a-z)/ra n dp ,q ,a n dr are in A.P., then prove that x ,y ,z are in H.P.

If (a-x)/(p x)=(a-y)/(q y)=(a-z)/ra n dp ,q ,a n dr are in A.P., then prove that x ,y ,z are in H.P.

If reciprocals of (y-x),2(y-a), (y-z) are in A.P., prove that x-a,y-a,z-a are in G.P.

Let an A.P. a G.P. and a H.P. of positive terms have the same first term a, the same last term b and the same numberof terms (2n+1). Let x,y,z be the (n+1)th terms respectively of the A.P., G.P. and H.P. respectively. On the basis of above information anwer the following question: x,y,z are in (A) A.P. (B) G.P. (C) H.P. (D) none of these

If normals at two points A(x_1, y_1) and B(x_2, y_2) of the parabola y^2 = 4ax , intersect on the parabola, then y_1, 2sqrt(2)a, y_2 are in (A) A.P. (B) G.P. (C) H.P. (D) none of these

If a,b,c are proper fractiion are in H.P. and x sum_(n=1)^oo a^n, y=sum_(n=1)^oo b^n, z= sum_(n=1)^oo c^n then x,y,z are in (A) A.P. (B) G.P. (C) H.P. (D) none of these

RD SHARMA ENGLISH-TRANSFORMATION FORMULAE-All Questions
  1. If cos A+cosB=1/2 and sin A+ sinB=1/4 , prove that: tan((A+B)/2)=1/2

    Text Solution

    |

  2. If asintheta="bsin"(theta+(2pi)/3)="csin"(theta+(4pi)/3) , prove that ...

    Text Solution

    |

  3. If sin(y+z-x),sin(z+x-y),"sin"(x+y-z) are in A.P., then t a n x ,tany ...

    Text Solution

    |

  4. Prove that: tan20^0tan40^0tan80^0=tan60^0

    Text Solution

    |

  5. Prove that :"sin"Asin(60^0-A)sin(60^0+A)=1/4sin3A

    Text Solution

    |

  6. Show that: t a n(60^0+theta)t a n(60^0-theta)=(2cos2theta+1)/(2cos2the...

    Text Solution

    |

  7. If alpha+beta=90^0 , find the maximum and minimum values of sinalphas...

    Text Solution

    |

  8. Prove that: cos20^0cos40^0cos60^0cos80^0=1/(16)

    Text Solution

    |

  9. Prove that: sin20^0sin40^0sin60^0sin80^0=3/(16)

    Text Solution

    |

  10. Prove that: 4"cos"12^0cos48^0cos72^0=cos36^0

    Text Solution

    |

  11. Prove that: tantheta.tan(60^0-theta).tan(60^0+theta)=tan3thetadot.'

    Text Solution

    |

  12. Prove that: sin(B-C)cos(A-D) + sin(C-A) cos (B-D) + sin(A-B) cos(C-...

    Text Solution

    |

  13. If sinx+siny=sqrt(3)(cos y-cos x), then sin3x+sin3y= (a) ...

    Text Solution

    |

  14. Prove that: (cos(A+B+C)+cos(-A+B+C)+cos(A-B+C)+"cos"(A+B-C))/(sin(A+B...

    Text Solution

    |

  15. Prove that: ((cosA+cos B)/(sinA-sinB))^n+((sinA+sinB)/(cosA-cosB))^n={...

    Text Solution

    |

  16. If sintheta=n"sin"(theta+2alpha) , prove that tan(theta+alpha)=(1+n)/...

    Text Solution

    |

  17. Prove that: (sin(A-C)+2sinA+sin(A+C)) / ("sin"("B"-"C")+2sinB+"sin"(B+...

    Text Solution

    |

  18. Prove that: ("cos"8Acos5A-cos12 Acos9A)/("sin"8Acos5A+cos12 Asin9A)=ta...

    Text Solution

    |

  19. Prove that: (sinA+sin3A+sin5A+sin7A)/(cosA+cos3A+cos5A+cos7A)=tan4A

    Text Solution

    |

  20. Prove that: 1+cos2x+cos4x+cos6x=4cosxcos2xcos3x

    Text Solution

    |