Home
Class 11
MATHS
Find the value of the expression 3{sin^...

Find the value of the expression `3{sin^4((3pi)/2-theta)+sin^4(3pi+theta)}-2{sin^6(pi/2+theta)+sin^6(5pi-theta)}`

Text Solution

AI Generated Solution

Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • TRIGONOMETRIC EQUATIONS

    RD SHARMA ENGLISH|Exercise All Questions|120 Videos
  • TRIGONOMETRIC RATIOS OF COMPOUND ANGLES

    RD SHARMA ENGLISH|Exercise All Questions|149 Videos

Similar Questions

Explore conceptually related problems

Find the value of the expression 3[sin^(4)((3pi)/(2)-alpha)+sin^(4)(3pi+alpha)]-2[sin^(6)((pi)/(2)+alpha)+sin^(6)(5pi-alpha)] .

Prove that: cos^2(pi/4-theta)-sin^2(pi/4-theta)=sin2theta

The expression 3[sin^4(3/2pi-alpha)+sin^4(3pi+alpha)]-2[sin^6(1/2pi+alpha)+sin^6(5pi-alpha)] is equal to

The expression 3[sin^4(3/2pi-alpha)+sin^4(3pi+alpha)]-2[sin^6(1/2pi+alpha)+sin^6(5pi-alpha)] is equal to

The value of the expression sin^6 theta + cos^6 theta + 3 sin^2 theta. cos^2 theta equals

The value of the expression cos^6theta+sin^6theta+3sin^2thetacos^2theta=

Show that 4 sin ((pi)/(3) - theta ) sin ((pi)/(3) + theta) =3-4 sin ^(2) theta

Prove that 4sinthetasin(pi/3+theta)sin((2pi)/3+theta)=sin3theta

If sin(pi cos theta)=cos(pi sin theta) , then sin 2theta=

Solve: sin2theta=sin((2pi)/(3)-theta)