Home
Class 11
MATHS
If a+i b=(c+i)/(c-i) , where c is real, ...

If `a+i b=(c+i)/(c-i)` , where `c` is real, prove that:`a^2+b^2=1 and b/a=(2c)/(c^2-1)dot`

Text Solution

AI Generated Solution

To solve the problem, we start with the equation given: \[ a + ib = \frac{c + i}{c - i} \] where \(c\) is a real number. We will prove that \(a^2 + b^2 = 1\) and \(\frac{b}{a} = \frac{2c}{c^2 - 1}\). ...
Promotional Banner

Topper's Solved these Questions

  • COMBINATIONS

    RD SHARMA ENGLISH|Exercise All Questions|117 Videos
  • DERIVATIVES

    RD SHARMA ENGLISH|Exercise All Questions|230 Videos

Similar Questions

Explore conceptually related problems

If a+ bi = (c + i)/(c-i), a, b , c in R , show that a^(2) + b^(2)=1 and (b)/(a)= (2c)/(c^(2)-1)

If cosA/2=sqrt((b+c)/(2c)) , then prove that a^2+b^2=c^2dot

If a , b and c are in continued proportion, prove that : (i) (a^(2) + ab + b^(2))/(b^(2) + bc + c^(2)) = (a)/(c) (ii) (a^(2) + b^(2) + c^(2))/((a + b + c)^(2)) = (a - b + c)/(a + b + c) .

In A B C , prove that (a-b^2cos^2C/2+(a+b)^2sin^2C/2=c^2dot

In A B C , prove that (a-b)^2cos^2C/2+(a+b)^2sin^2C/2=c^2dot

If a, b and c are in G.P. then prove that 1 a 2 - b 2 + 1 b 2 = 1 b 2 - c 2 . 1/(a^2-b^2)+1/(b^2)=1/(b^2-c^2)dot

If (b-c)^2,(c-a)^2,(a-b)^2 are in A.P., then prove that 1/(b-c),1/(c-a),1/(a-b) are also in A.P.

If (b-c)^2,(c-a)^2,(a-b)^2 are in A.P., then prove that 1/(b-c),1/(c-a),1/(a-b) are also in A.P.

If (b-c)^2,(c-a)^2,(a-b)^2 are in A.P., then prove that 1/(b-c),1/(c-a),1/(a-b) are also in A.P.

If A=[(a,b),(c,d)] , where a, b, c and d are real numbers, then prove that A^(2)-(a+d)A+(ad-bc) I=O . Hence or therwise, prove that if A^(3)=O then A^(2)=O