Home
Class 10
MATHS
If tanA=ntanB and sinA=msinB, prove that...

If tanA=ntanB and sinA=msinB, prove that `cos^2A=[m^2-1]/[n^2-1]`

Text Solution

AI Generated Solution

Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • TRIANGLES

    RD SHARMA ENGLISH|Exercise All Questions|366 Videos
  • TRIGONOMETRIC RATIOS

    RD SHARMA ENGLISH|Exercise All Questions|249 Videos

Similar Questions

Explore conceptually related problems

If tan A = n tan B and sin A = m sin B, prove that : cos^(2) A = (m^(2) - 1)/(n^(2) - 1)

If tanA+sinA=m and tanA-sinA=n , then prove that m^(2)-n^(2)=4sqrt(mn) .

If tanA=m+1 and tanB=m-1 , prove that tan(A-B)=2/(m^(2)) .

In sinA=sinB and cos A=cos B , then prove that sin((A-B)/2)=0

Prove that: tanA(1+sec2A)=tan2A

If sin A=(3)/(5) , prove that tanA+(1)/(cosA)=2 or -2

Prove that: (sin2A)/(1+cos2A)=tanA

If tanA=m/(m-1)\ a n d tanB=1/(2m-1), then prove that A-B=\ pi/4

If tanA+sinA=p and tanA-sinA=q , then the value of ((p^(2)-q^(2))^(2))/(pq) is :

prove that ((1-tanA)/(1-cotA))^2=tan^2A