Home
Class 12
MATHS
int0^1log(1/x-1)dx is equal to...

`int_0^1log(1/x-1)dx` is equal to

Text Solution

AI Generated Solution

Promotional Banner

Topper's Solved these Questions

  • CONTINUITY

    RD SHARMA ENGLISH|Exercise All Questions|282 Videos
  • DERIVATIVES AS A RATE MEASURER

    RD SHARMA ENGLISH|Exercise All Questions|168 Videos

Similar Questions

Explore conceptually related problems

If f(x) is continuous for all real values of x , then sum_(r=1)^nint_0^1f(r-1+x)dx is equal to (a) int_0^nf(x)dx (b) int_0^1f(x)dx (c) int_0^1f(x)dx (d) (n-1)int_0^1f(x)dx

If f(x) is continuous for all real values of x , then sum_(r=1)^nint_0^1f(r-1+x)dx is equal to (a) int_0^nf(x)dx (b) int_0^1f(x)dx (c) int_0^1f(x)dx (d) (n-1)int_0^1f(x)dx

int_0^1 (x/(x+1))dx

""int_0^1(1)/(x) dx"

int(log(x+1)-logx)/(x(x+1))dx is equal to :

The value of int x log x (log x - 1) dx is equal to

Column I, a) int(e^(2x)-1)/(e^(2x)+1)dx is equal to b) int1/((e^x+e^(-x))^2)dx is equal to c) int(e^(-x))/(1+e^x)dx is equal to d) int1/(sqrt(1-e^(2x)))dx is equal to COLUMN II p) x-log[1+sqrt(1-e^(2x)]+c q) log(e^x+1)-x-e^(-x)+c r) log(e^(2x)+1)-x+c s) -1/(2(e^(2x)+1))+c

The value of int_(log1//2)^(log2)sin{(e^(x)-1)/(e^(x)+1)}dx is equal to

Evaluate: int_(0)^(1) log (1/x-1)dx

int_(0)^(1//2)(1)/(1-x^(2))ln.(1-x)/(1+x)dx is equal to